S3FN60D

USB Remote 32-bit MCU

Revision 1.30 January 2012

User's Manual

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise.

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2012 Samsung Electronics Co., Ltd. All rights reserved.

Important Notice

Samsung Electronics Co. Ltd. ("Samsung") reserves the right to make changes to the information in this publication at any time without prior notice. All information provided is for reference purpose only. Samsung assumes no responsibility for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

This publication on its own does not convey any license, either express or implied, relating to any Samsung and/or third-party products, under the intellectual property rights of Samsung and/or any third parties.

Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

Customers are responsible for their own products and applications. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts.

Samsung products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Samsung product could reasonably be expected to create a situation where personal injury or death may occur. Customers acknowledge and agree that they are solely responsible to meet all other legal and regulatory requirements regarding their applications using Samsung products notwithstanding any information provided in this publication. Customer shall

Copyright © 2012 Samsung Electronics Co., Ltd.

Samsung Electronics Co., Ltd. San #24 Nongseo-Dong, Giheung-Gu Yongin-City, Gyeonggi-Do, Korea 446-711

Contact Us: <u>ms3535.jeong@samsung.com</u> TEL: (82)-(31)-209-3042 FAX: (82)-(31)-8000-2005

Home Page: http://www.samsungsemi.com

indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim (including but not limited to personal injury or death) that may be associated with such unintended, unauthorized and/or illegal use.

WARNING No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung. This publication is intended for use by designated recipients only. This publication contains confidential information (including trade secrets) of Samsung protected by Competition Law, Trade Secrets Protection Act and other related laws, and therefore may not be, in part or in whole, directly or indirectly publicized, distributed, photocopied or used (including in a posting on the Internet where unspecified access is possible) by any unauthorized third party. Samsung reserves its right to take any and all measures both in equity and law available to it and claim full damages against any party that misappropriates Samsung's trade secrets and/or confidential information.

警告本文件Q向经韩国三星电子株式会社授权的人员提供,其内容含有商业秘密保护相关法规规定并受其保护的三星电子株式会社商业秘密,任何直接或间接非法向第三人披露、传播、复制或允许第三人使用该文件全部或部分内容的行为(包括在互联网等公开媒介刊登该商业秘密而可能导致不特定第三人获取相关信息的行为)皆为法律严格禁止。此等违法行为一经发现,三星电子株式会社有权根据相关法规对其采取法律措施,包括但不限于提出损害赔偿请求。

Trademarks

All brand names, trademarks and registered trademarks belong to their respective owners.

- Exynos, Exynos4210, FlexOneNAND, and OneNAND are trademarks of Samsung Electronics.
- ARM, Jazelle, TrustZone, and Thumb are registered trademarks of ARM Limited. Cortex, ETM, ETB, Coresight, ISA, and Neon are trademarks of ARM Limited.
- Java is a trademark of Sun Microsystems, Inc.
- SD is a registered trademark of Toshiba Corporation.
- MMC and eMMC are trademarks of MultiMediaCard Association.
- JTAG is a registered trademark of JTAG Technologies, Inc.
- Synopsys is a registered trademark of Synopsys, Inc.
- I2S is a trademark of Phillips Electronics.
- I²C is a trademark of Phillips Semiconductor Corp.
- MIPI and Slimbus are registered trademarks of the Mobile Industry Processor Interface (MIPI) Alliance.

All other trademarks used in this publication are the property of their respective owners.

Chip Handling Guide

Precaution against Electrostatic Discharge

When handling semiconductor devices, be sure that the environment is protected against static electricity.

- 1. Operators should wear anti-static clothing and use earth band.
- 2. All objects that come in direct contact with devices should be made of materials that do not produce static electricity that would cause damage.
- 3. Equipment and work table must be earthed.
- 4. Ionizer is recommended to remove electron charge.

Contamination

Be sure to use semiconductor products in the environment that may not be exposed to dust or dirt adhesion.

Temperature/Humidity

Semiconductor devices are sensitive to environment temperature and humidity. High temperature or humidity may deteriorate semiconductor device's characteristics. Therefore avoid storage or use in such conditions.

Mechanical Shock

Care should be exercised not to apply excessive mechanical shock or force on semiconductor device.

Chemical

Do not expose semiconductor device to chemical because reaction to chemical may cause deterioration of device characteristics.

Light Protection

In case of non-EMC (Epoxy Molding Compound) package, do not expose semiconductor IC to strong light. It may cause device's malfunction. (But, some special products which utilize the light or have security function are excepted from this guide)

Radioactive, Cosmic and X-ray

Semiconductor devices can be influenced by radioactive, cosmic ray or X-ray. Radioactive, cosmic and X-ray may cause soft error during device operation. Therefore semiconductor devices must be shielded under environment that may be exposed to radioactive, cosmic ray or X-ray.

EMS (Electromagnetic Susceptibility)

Note that semiconductor device's characteristics may be affected by strong electromagnetic wave or magnetic field during operation under insufficient PCB circuit design for EMS.

SAMSUNG ELECTRONICS

Table of Contents

1 PRODUCT OVERVIEW	1-1
1.1 Overview	1_1
1.2 Feature	
1.3 Block Diagram	
1.4 Pin Assignments (64-Pin TQFP)	
1.5 Pin Circuits	
2 ADDRESS SPACE	2-1
2.1 Overview	
2.2 Memory Configuration in Cortex M0 Side	
2.3 Smart Option	
3 CORTEX-M0	3-1
3.1 Overview	
3.2 Features	
3.3 Interfaces	
4 INTERRUPTS	4-1
4.1 Overview	
4.2 Features	
4.3 Interrupt Sources & Interrupt Vector	
4.4 System Interrupt Vector	
5 MEMORY MAP	5-1
5.1 Overview	
5.2 Default Memory Map	
5.3 Core & Peripheral Special Function Register Map	
6 INSTRUCTION SET	6-1
6.1 Cortex-M0 Instruction Set Summary	
7 CLOCK CIRCUITS	7-1
7.1 Overview	
7.2 Features	7-1
7.2.1 System Clock Circuit	
7.2.2 Power Supply Selection Circuit	
7.2.3 PLL Clock Circuit	
7.3 Block Diagram	
7.4 Clock Status during Power-down Modes	
7.5 Clock Control State Machine 7.6 Power Source Changing Circuit	
7.6.1 Power Supply Selection	
7.7 PLL (Phase Locked Loop)	
7.8 Change PLL Settings in Normal Operation Mode	
7.9 Power Management	

SAMSUNG

	7.9.1 Power Modes	
	7.9.2 Low Power Mode and Wake-Up	
	7.9.3 Enter IDLE Mode	
	7.9.4 Exit IDLE Mode	
	7.9.5 Enter STOP Mode	
	7.9.6 Exit STOP Mode	
	7.10 Register Description	
	7.10.1 Register Map Summary	
8	RESET	8-1
	8.1 Overview	
	8.1.1 Reset Sources	
	8.1.2 Reset Mechanism	
	8.1.3 External Reset Pin	
	8.1.4 Watch Dog Timer Reset	
	8.1.5 S/W Reset	
	8.1.6 LVD Reset	
	8.1.7 POR Reset (Internal Power-On Reset)	
	8.1.8 System Reset Operation	
	8.1.9 Status Table of Back-Up Mode, Stop Mode, and Reset	
	8.2 Register Description	
	8.2.1 Register Map Summary	
9	I/O PORTS	9-1
	9.1 Overview	9-1
	9.2 Features	
	9.2.1 Port Control Description	
	9.3 Register Description	
	9.3.1 Register Map Summary	
1(0 BASIC TIMER/WATCHDOG TIMER	10-1
	10.1 Overview	10-1
	10.2 Features	
	10.2.1 Basic Timer Control Register (BTCON)	
	10.2.2 Basic Timer Function Description	
	10.2.3 Basic Timer/Watchdog Timer Block Diagram	
	10.3 Register Description	
	10.3.1 Register Map Summary	
11	1 COUNTER A	11-1
	11.1 Overview	11-1
	11.1.1 Feature	
	11.1.2 Pin Description	
	11.2 Functional Description	
	11.2.1 Block Diagram	
	11.2.2 Counter A Pulse Width Calculations	
	11.2.3 Counter A Data Register Setting	
	11.2.4 Counter A output Signal Waveform	
	11.3 Register Description	
	11.3.1 Register Map Summary	

12 TIMER/COUNTER	
12.1 Overview	
12.1.1 Features	
12.1.2 Pin Description	
12.2 Functional Description	
12.2.1 Block Diagram	
12.2.2 Counter Size	
12.2.3 Counter Clock	
12.2.4 Debug Option	
12.2.5 Overflow Mode	
12.2.6 Period Mode	
12.2.7 Interrupt	
12.3 Register Description	
12.3.1 Register Map Summary	
13 FREE RUNNING TIMER	13-1
13.1 Overview	
13.1.1 Features	
13.2 Functional Description	
13.2.1 Block Diagram	
13.2.2 Timer Clock	
13.2.3 Count and Data register	
13.2.4 Interrupt	
13.2.5 Operation	
13.3 Register Description 13.3.1 Register Map Summary	
14 SERIAL PERIPHERAL INTERFACE (SPI)	
14.1 Overview	
14.1.1 Features	
14.1.2 Operation	
14.2 Register Description	
14.2.1 Register Map Summary	
15 UART	
15.1 Overview	
15.2 Function Description	
15.2.1 Uart Operation	
15.2.2 Data Transmission	
15.2.3 Data Reception	
15.2.4 Interrupt Request Generation	
15.2.5 DMA Operation	
15.3 Baud Rate Generation	
15.3.1 Loop Back Mode	
15.3.2 Infra Red (IrDA) Mode	
15.4 Register Description	
15.4.1 Register Map Summary	15-8
16 INTER-INTEGRATED CIRCUIT (IIC)	16-1

16.1.1 Features	
16.1.2 Pin Description	
16.2 Functional Description	
16.2.1 Block Diagram	
16.2.2 Functional Operation	
16.2.3 Extensions to the I2C-bus Specification 16.2.4 Fast Mode	
16.3 Inter-Intergrated Circuit Timing	
16.4 Register Description	
16.4.1 Register Map Summary	
17 USB CONTROLLER	17-1
17.1 Overview	
17.1.1 Features	
17.1.2 USB Block Overview	
17.2 Register Description	
17.2.1 Register Map Summary	
18 10-BIT ANALOG-TO-DIGITAL CONVERTER	18-1
18.1 Overview	
18.1.1 Features	
18.1.2 Pin Description	
18.2 Functional Description	
18.2.1 Analog Input Type & Range	
18.2.2 Reference Voltage	
18.2.3 Power down Mode	
18.2.4 Wake-up Time	
18.2.5 Digital Output Format	
18.2.6 Input/Output Chart 18.2.7 Conversion Timing	
18.2.8 End of Conversion	
18.2.9 A/D Converter Control Register (ADCCON)	
18.3 Functional Block Diagram	
18.4 Timing Diagram	
18.5 Register Description	
18.5.1 Register Map Summary	
19 DMA (DIRECT MEMORY ACCESS)	19-1
19.1 Overview	
19.2 DMA Operation	
19.2.1 DMA Transfers	
19.2.2 Starting/Ending DMA Transfers	
19.3 Operation Mode-H/W Request	
19.3.1 Single Service Mode	
19.3.2 Continuous Service Mode	
19.4 DMA Transfer Size	
19.4.1 Single Transfer Size	
19.4.2 Burst (4-unit) Transfer Size	
19.5 DMA Operation Sequence	
19.5.1 S/W Request Sequence	
19.5.2 H/W Request Sequence	

19.6 Register Description	
19.6.1 Register Map Summary	
20 EMBEDDED FLASH MEMORY	20-1
20.1 Overview	
20.1.1 Flash ROM Configuration	
20.2 Register Description	
20.2.1 Register Map Summary	
20.3 Programming	
21 MEMORY PROTECTION UNIT	21-1
21.1 Overview	
21.2 Feature	
21.2.1 Region Definition	
21.2.2 Region to Region ACCESSBILITY	
21.3 MPU Abort Cases	
21.3.1 Read Cases	
21.3.2 Write Cases	
21.4 MPU SFR Configuration	
21.5 No Allowance Cases	
21.6 Register Description	
21.6.1 Register Map Summary	
22 LOW VOLTAGE DETECTOR	22-1
22.1 Overview	
22.2 LVD	
22.2.1 LVD FLAG	
22.3 Register Description	
22.3.1 Register Map Summary	
23 S3FN60D FLASH MCU	23-1
23.1 Overview	
23.1.1 Test Pin Voltage	
24 DEBUG	24-1
24.1 Overview	
24.2 Feature	
24.2.1 Block Diagram	
24.2.2 ARM Reference	
25 ELECTRICAL DATA	25-1
25.1 Overview	
25.2 Absolute Maximum Ratings	
25.3 D.C. Electrical Characteristics	
25.4 Characteristics of Low Voltage Detect Circuit	
25.5 LVD Enable Time	
25.6 A/D Converter Electrical Characteristics	
25.7 Power on Reset Circuit	
25.8 Data Retention Supply Voltage in Stop Mode	
25.9 Input/Output Capacitance	

25.10 Oscillation Characteristics	
25.11 Ring Oscillator Characteristics	
25.12 Oscillation Stabilization Time	
25.13 AC Electrical Characteristics for Internal Flash ROM	
25.14 ESD Characteristics	
25.15 USB DC Electrical Characteristics	
25.16 SPI Interface Transmit/Receive Timing Constants	
25.17 IIC BUS Controller Module Signal Timing	
26 MECHANICAL DATA	26-1
26.1 Overview	

List of Figures

Title

Number		Number
Figure 1-1	Block Diagram	
Figure 1-2	Pin Assignment Diagram (64-Pin TQFP Package)	
Figure 1-3	External Interrupt Port to Wake Up Stop Mode (Pin Circuit Type 1)	1-10
Figure 1-4	IN/OUT Port, Alternative Function Port (Pin Circuit Type 2)	1-11
Figure 1-5	IN/OUT Port, Alternative Function Port & Ext. Interrupt (Pin Circuit Type 3)	1-12
Figure 1-6	IN/OUT Port, Alternative Input Port (ADC) & Ext. Interrupt (Pin Circuit Type 4)	1-13
Figure 1-7	nRESET Pin (Pin Circuit Type 5)	1-13
Figure 2-1	Program Memory Configuration	2-2
Figure 7-1	Main Oscillator Circuit	
Figure 7-2	Power Circuit (V _{DD})	
Figure 7-3	nRESET Circuit	
Figure 7-4	System Clock Circuit Diagram	
Figure 7-5	Clock Control State Machine	
Figure 7-6	Power Source Changing Circuit	
Figure 7-7	Timing Diagram of Clock Change in Normal Mode	
Figure 7-8	Different Handling Process for Interrupt and Event in Idle or Stop Mode	7-10
Figure 8-1	RESET Sources of The S3FN60D	
Figure 8-2	Timing Diagram for Back-Up Mode Input and Released by LVD	
Figure 8-3	Timing Diagram in Stop Mode	
Figure 8-4	Timing Diagram in Stop Mode	
Figure 8-5	Timing Diagram for Internal Power-On Reset Circuit	
Figure 8-6	Reset Timing Diagram for the S3FN60D in STOP Mode by IPOR	
Figure 8-7	Wake Up in Stop Mode by IPOR (VPOR < VDD < VLVD)	8-8
Figure 10-1	Basic Timer & Watchdog Timer Block Diagram	10-3
Figure 11-1	Counter A Block Diagram	
Figure 11-2	Counter A unit signal	
Figure 11-3	Counter A Block Diagram	
Figure 11-4	Counter A Output Flip-flop Waveforms in Repeat Mode	
Figure 11-5	TA_EVELOPE = 0	
Figure 11-6	TA_ENVELOPE = 1	11-6
Figure 12-1	TC Block Diagram	
Figure 12-2	Match & Overflow Operation Timing	
Figure 12-3	Counter Values According to START, STOPCLEAR and STOPHOLD	
Figure 12-4	Capture Operation Timing	
Figure 12-5	Period Mode Timing	
Figure 12-6	Interval Operation	
Figure 12-7	PWM Operation	
Figure 12-8	PWM Extension Waveform	
Figure 12-9	PWM Waveform with OUTSL = 0	
Figure 12-10	PWM Waveform with OUTSL = 1	12-11

Figure

Page

Figure 12-11	PWM Waveform Under IDLE State	12-12
Figure 12-12	PWM Waveform with STOPHOLD = 1, STOPCLEAR = 0	
Figure 12-13	PWM Waveform with STOPCLEAR = 1	
Figure 13-1	Free Running Timer Block Diagram	
Figure 13-2	Simplified Timer Function Diagram: Match	
Figure 14-1	Motorola SPI Frame Format (Single Transfer) with SPO = 0 and SPH = 0	14-4
Figure 14-2	Motorola SPI Frame Format (Continuous Transfer) with SPO = 0 and SPH = 0	
Figure 14-3	Motorola SPI Frame Format (Single Transfer) with SPO = 0 and SPH = 1	
Figure 14-4	Motorola SPI Frame Format (Single Transfer) with SPO = 1 and SPH = 0	
Figure 14-5	Motorola SPI Frame Format (Continuous Transfer) with SPO = 1 and SPH = 0	
Figure 14-5	Motorola SPI Frame Format with SPO = 1 and SPH = 1	
-		
Figure 14-7	PrimeCell SSP Master Coupled To Two Slaves.	
Figure 14-8	SPI Master Coupled to two PrimeCell SSP Slaves	14-11
Figure 15-1	UART Block Diagram	15-1
Figure 15-2	UART Data Transmission Process	
Figure 15-3	UART Data Reception Process	
Figure 15-4	IrDA Function Block Diagram	
Figure 15-5	Serial I/O Frame Timing Diagram (Normal UART)	
Figure 15-6	Infra Red (IrDA) Transmit Mode Frame Timing Diagram	
Figure 15-7	Infra Red (IrDA) Receive Mode Frame Timing Diagram	15-7
		40.0
Figure 16-1	Block Diagram	
Figure 16-2	Data Validity	
Figure 16-3	Start and Stop Conditions	
Figure 16-4	Data Transfer on the I2C Bus	
Figure 16-5	Acknowledge	
Figure 16-6	A Master-transmitter Addresses a Slave	
Figure 16-7	Hold and Setup Delays	16-43
Figure 17-1	USB Core Block Diagram	17-3
Figure 18-1	A/D Converter Functional Block Diagram	18-4
Figure 18-2	A/D Conversion Phase	
Figure 18-3	A/D Converter Data Register (ADDATA)	
9		
Figure 19-1	DMA Request Mode	19-2
Figure 19-2	DMA Unit Block Diagram	
Figure 19-3	Single Transfer in Single Service Mode	
Figure 19-4	Sequential Transfer in Single Service Mode	
Figure 19-5	Continuous Service Mode	
Figure 19-6	Burst (4-unit) Transfer Size	
. goi e i e e		
Figure 20-1	Sector Erase Flowchart in User Program Mode	20-6
Figure 20-2	Page Erase Flowchart in User Program Mode	
Figure 20-3	1-word Program Flowchart in a User Program Mode	
Figure 20-4	N-word Program Flowchart in a User Program Mode	
90.0 20 4		
Figure 21-1	MPU Enabled Access Permission Configuration	
Figure 21-2	MPU Enabled Access Permission Configuration	
Figure 21-3	MPU Enabled Access Permission Configuration	
	in e Endeer loose remission comgaration	

Figure 21-4	MPU SFR Configuration	21-9
Figure 21-5	NO Allowance Case	21-10
Figure 22-1	Low Voltage Detect (LVD) Block Diagram	22-3
Figure 23-1	S3FN60D Pin Assignment	23-1
Figure 24-1	Block Diagram	
Figure 25-1	Stop Mode Release Timing when Initiated by an External Interrupt	
Figure 25-2	Stop Mode Release Timing when Initiated by a Reset	
Figure 25-3	Stop Timing Diagram for Back-up Mode Input in Stop Mode	
Figure 25-4	Input Timing for External Interrupts (Port 0, 1, 2 and Port 4)	
Figure 25-5	Input Timing for Reset (nRESET Pin)	
Figure 25-6	SPI Interface Transmit/Receive Timing Constants	
Figure 26-1	64-Pin TQFP Package Dimension	

List of Tables

Table Title Number		Page Number	
Table 1-1	Pin Descriptions of 64-TQFP		
Table 4-1 Table 4-2	Core Exception Vector System Interrupt Vectors & Sources		
Table 5-1 Table 5-2 Table 5-3 Table 5-4	S3FN60D's Memory Map Core Special Function Register Map Peripheral Memory Map Memory Map of SFR		
Table 6-1	Cortex-M0 Instruction Summary		
Table 8-1 Table 8-2	Reset Condition in STOP Mode Summary of Each Mode		
Table 11-1	Pin Description	11-1	
Table 12-1 Table 12-2 Table 12-3	Pin Description PWM Extension Bits PWM Output Polarity According to Control Bits		
Table 15-1	Baud Rate Table	15-17	
Table 16-1 Table 16-2	S3FN60D Pin Description Examples of Baud Rate Configuration		
Table 16-3 Table 16-4 Table 16-5	Definition of Bytes in First Byte Timing Requirements Values of FSCL in kHz Depending of PRV, FAST and SCLK		
Table 16-6 Table 16-7	Master/Receiver Mode Status Codes		
Table 16-8 Table 16-9 Table 16-10	Slave/Receiver Mode Status Codes Slave/Transmitter Mode Status Codes Miscellaneous Status Codes		
Table 18-1	ADC Pin Description		
Table 21-1	Region Definition		
Table 21-2 Table 21-3	Region Accessibility Region Accessibility		
Table 21-4	MPU Abort Cases		
Table 21-5	Abort Occurrences DURING Reading Smart Option 0		
Table 21-6	Abort Occurrences DURING Reading Smart Option 1		
Table 21-7 Table 21-8	Abort Occurrences DURING Writing Smart Option 0 Abort Occurrences DURING Writing Smart Option 1		
Table 22-1	Characteristics of Low Voltage Detect Circuit		

Table 22-2	LVD Enable Time	22-3
Table 23-1	Descriptions of Pins Used to Read/Write the Flash ROM	
Table 25-1	Absolute Maximum Ratings	
Table 25-2	D.C. Electrical Characteristics	
Table 25-3	Characteristics of Low Voltage Detect Circuit	
Table 25-4	LVD Enable Time	
Table 25-5	A/D Converter Electrical Characteristics	
Table 25-6	Power On Reset Circuit	
Table 25-7	Data Retention Supply Voltage in Stop Mode	
Table 25-8	Input/Output Capacitance	
Table 25-9	Oscillation Characteristics	
Table 25-10	Ring Oscillator Characteristics	
Table 25-11	Oscillation Stabilization Time	
Table 25-12	AC Electrical Characteristics for Internal Flash ROM	
Table 25-13	ESD Characteristics	
Table 25-14	USB DC Electrical Characteristics	
Table 25-15	SPI Interface Transmit/Receive Timing Constants	
Table 25-16	IIC BUS Controller Module Signal Timing	

Product Overview

1.1 Overview

The S3FN60D single-chip CMOS micro-controller is specially designed and packaged for "USB Remote controller" application. The S3FN60D is a family of the smallest and lowest power processor with Cortex-M0 designed by Advanced RISC Machines (ARM). The S3FN60D has 128 Kbytes flash memory, 8 Kbytes data memory.

The following is the list of integrated on-chip functions that are described in detail in this user's manual:

- Internal LVD circuit and 32-bit-programmable pins for external interrupts
- One 8-bit basic timer for oscillation stabilization and watchdog function (System reset)
- Three variable timer/counters (16-bit, 32-bit etc.) with selectable operating modes
- One 16-bit counter with auto-reload function and one-shot or repeat control
- One 32-bit free running timer
- One channel UART
- Two channel 8-bit/16-bit/32-bit SPI
- Two channel IIC
- USB device 2.0 (12 Mbps full speed)
- One channel DMA controller
- Internal ring oscillator: 32.768 kHz
- Memory protection unit
- Crystal/Ceramic resonator or external clock can be used as the clock source and PLL

The S3FN60D is a versatile general-purpose microcontroller, which is especially suitable for use as remote transmitter controller. It is currently available in 64-pin TQFP package.

1.2 Feature

CPU

• 32-bit RISC ARM cortextm-M0 core

Memory

- Program memory:
 - 128 Kbyte internal flash memory
 - 10 years data retention
 - Endurance: 10,000 Erase/Program cycles
 - 32-bit programmable
- Data memory: 8 Kbyte RAM
- Flash Erase Size: Page (256 byte) or sector (8 Kbyte)

I/O Ports

• Five 8-bit I/O ports (P0, P1, P2, P4, P5), One 7-bit I/O port (P3) and one 3-bit I/O port (P6) for a total of 50-bit programmable pins.

Carrier Frequency Generator

• One 16-bit counter with auto-reload function and one-shot or repeat control (Counter A)

Basic Timer and Timer/Counters

- One programmable 8-bit basic timer (BT) for oscillation stabilization control or watchdog timer (Software reset) function
- Three variable bit timer/counter (TA, T1, T2) with five operating modes: One-shot operation or repeated operation, Match & Overflow operation, Capture operation, Interval operation, PWM operation
- One 32-bit free running timer (FRT)

Two Channel SPI

• 8-bit/16-bit/32-bit programmable data length

One Channel UART

- 1-channel UART with interrupt-based operation or a DMA request
- Programmable baud rates
- Supports 5-bit, 6-bit, 7-bit and 8-bit serial data transmit/receive frame in UART

Two Channel IIC

• 2-channel I2C peripherals serial bus

One Channel USB Device

- 1-port USB device
- USB 2.0 full speed (12 Mbps)

Memory Protection Unit

- Read/write access controllable
- Base/Limit region registers: 4 sets
- Configurable range: 4 Mbytes areas with 256 byte resolution

Analog to Digital Converter (10-bit Resolution)

- 8-channel multiplexed analog data input pins (AIN0-AIN7)
- 20 µs conversion time

One Channel DMA Controller

- Supports peripheral to memory, memory to peripheral and memory to memory
- Supports single service mode and continuous service mode

Clock Circuit

- External crystal/resonator: 1 to 20 MHz
- CPU: upto 20 MHz
- USB block: 48 MHz (Generated by PLL)
- Internal ring oscillator: 32.768 kHz

Back-up Mode

- When V_{DD} is lower than V_{LVD} and LVD is "ON", the chip enters back-up mode to block oscillation and reduce the current consumption
- When reset pin is lower than Input Low Voltage (VIL), the chip enters back-up mode to block oscillation and reduce the current consumption

Low Voltage Detect Circuit

- Low voltage detect to get into back-up mode and reset
- 1.64 V (Typ.) ± 40 mV
- Low voltage detect to control LVD_flag bit (Selectable)
- 1.90 V, 2.10 V (Typ.) ± 70 mV
- 2.30 V, 2.40 V (Typ.) ± 90 mV
- LVD-reset is enabled in the operating mode: When the voltage at VDD is falling down and passing VLVD, the chip goes into back-up mode. The voltage at VDD is rising up, the reset pulse is generated at "VDD > VLVD".
- LVD is disable in the stop mode: If the voltage at VDD is not falling down to VPOR, the reset pulse is not generated

Operating Temperature Range

• - 25 °C to + 85 °C

Operating Voltage Range

• 1.60 V to 3.6 V

Operating Frequency Range

- External crystal/resonator: 1 to 20 MHz
- USB logic: 48 MHz by PLL
- CPU: upto 20 MHz

Package Types

• 64-pin TQFP

1.3 Block Diagram

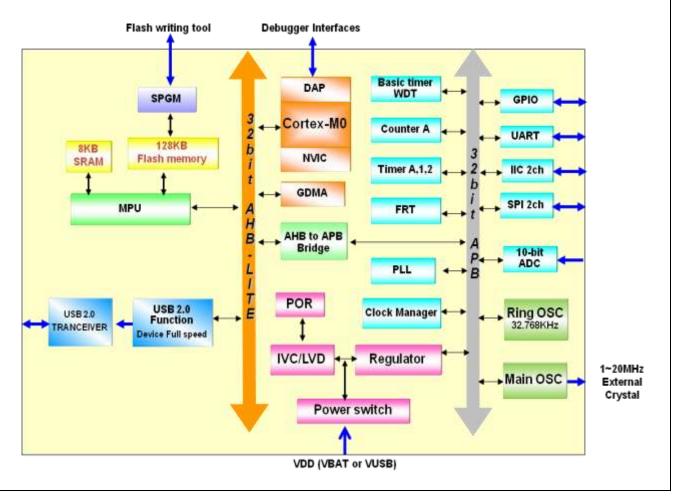


Figure 1-1 Block Diagram

1.4 Pin Assignments (64-Pin TQFP)

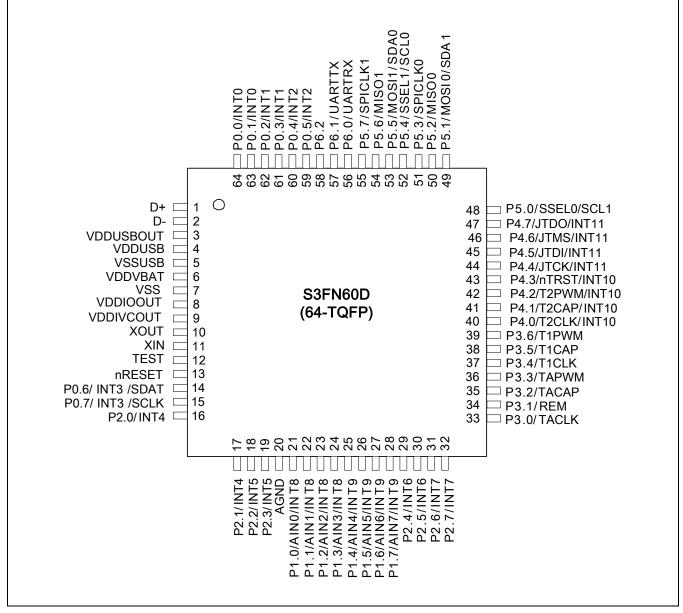


Figure 1-2 Pin Assignment Diagram (64-Pin TQFP Package)

Pin Names	Pin Type	Pin Description	Circuit Type	64 Pin No.	Shared Functions
P0.0-P0.7	I/O	 I/O port with bit-programmable pins. Configurable to input, output mode or n-channel open-drain output mode. Pull-up resistors can be assigned by software. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/ disable, falling or rising edge control. In the tool mode, P0.6 and P0.7 are assigned as serial MTP interface pins; SDAT and SCLK 	1	14-15 59-64	Ext. INT (INT0-INT3) (SDAT) (SCLK)
P1.0-P1.7	I/O	I/O port with bit-programmable pins. Configurable to input, output mode, n- channel open-drain output mode or alternative function mode. Pull-up resistors can be assigned by software. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/ disable, falling or rising edge control.	4	21-28	AINO-AIN7 Ext.INT (INT8-INT9)
P2.0-P2.7	I/O	I/O port with bit-programmable pins. Configurable to input or push-pull output mode, or n-channel open-drain output mode. Pull-up resistors can be assigned by software. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/ disable, falling or rising edge control.	1	16-19 29-32	Ext. INT (INT4-INT7)
P3.0-3.6	I/O	 I/O port with bit-programmable pins. Configurable to input, output mode, n- channel open-drain output mode or alternative function mode. Pull-up resistors can be assigned by software. Port 3.1 has high current drive capability and can be assigned individually as an output pin for REM. P3.7 is not used. 	2	33-39	REM TOCLK, TOCAP, TOPWM T1CLK, T1CAP, T1PWM
P4.0-P4.7	I/O	 I/O port with bit-programmable pins. Configurable to input, output mode, n-channel open-drain output mode or alternative function mode. Pull-up resistors can be assigned by software. P4.3, 4, 5, 6, 7 are initially used for JTAG interface. Also P4.3, 4, 5, 6, 7 can be assigned as an I/O port from setting P4CONH/L. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/ disable, falling 	3	40-47	T2CLK, T2CAP, T2PWM nTRST, JTCK, JTDI, JTMS, JTDO Ext.INT (INT10-INT11)

Table 1-1 Pin Descriptions of 64-TQFP

Pin Names	Pin Type	Pin Description	Circuit Type	64 Pin No.	Shared Functions	
		or rising edge control.*				
P5.0-P5.7	I/O	alternative function mode. Pull-up resistors 2 48-55 M		SDA0/1, SCL0/1 MOSI0/1, MISO0/1 SPICLK0/1, SSEL0/1		
P6.0-P6.2	I/O	I/O port with bit-programmable pins. Configurable to input, output mode, n- channel open-drain output mode or alternative function mode. Pull-up resistors can be assigned by software.	2	56-58	3 UARTRX UARTTX	
VDDVBAT	_	Power supply input pin It is recommended that add 0.1 μ F and 470uF capacitor in parallel. For application systems, refer to power circuit description of page 7-2.	_	6	-	
VSS	-	Chip ground pin	-	7	-	
AGND	_	ADC ground pin	-	20	-	
VDDUSB	_	USB power supply input pin (5 V) It is recommended that add 0.1 μ F and 10 μ F capacitor in parallel.	_	4	-	
VSSUSB	-	USB ground pin	_	5	-	
XOUT, XIN	_	System clock input and output pins	-	10, 11	-	
TEST	I	Test signal input pin If on board programming is needed, It is If on board programming is needed, It is recommended that add 0.1 μF capacitor for better noise immunity; otherwise, connect - TEST pin to VSS directly. There is internal 1 pull-down resistor in TEST pin. -		12	_	
nRESET	I	System reset signal input pin and back-up mode input.It is recommended that add a 0.1 μF capacitor between nRESET pin and VSS513for better noise immunity. There is internal pull-up resistor in nRESET pin that is active low.513		13	-	
VDDIVCOUT	_	Connected to GND through capacitor.It is recommended that add a 1 μF-9		_		
VDDUSBOUT	_	Connected to GND through capacitor It is recommended that add a 2.2 μ F capacitor.			-	

Pin Names	Pin Type	Pin Description	Circuit Type	64 Pin No.	Shared Functions
VDDIOOUT	_	Connected to GND through capacitor It is recommended that add a 4.7 μ F capacitor.	_	8	-
D +	I	USB signal pin	_	1	_
D –	Ι	USB signal pin	-	2	_
nTRST	Ι	JTAG test reset input	3	43	I/O port
JTCK	Ι	JTAG test clock input	3	44	I/O port
JTDI	I	JTAG test data input	3	45	I/O port
JTMS	Ι	JTAG test mode selection input	3	46	I/O port
JTDO	0	JTAG test data output	3	47	I/O port

1.5 Pin Circuits

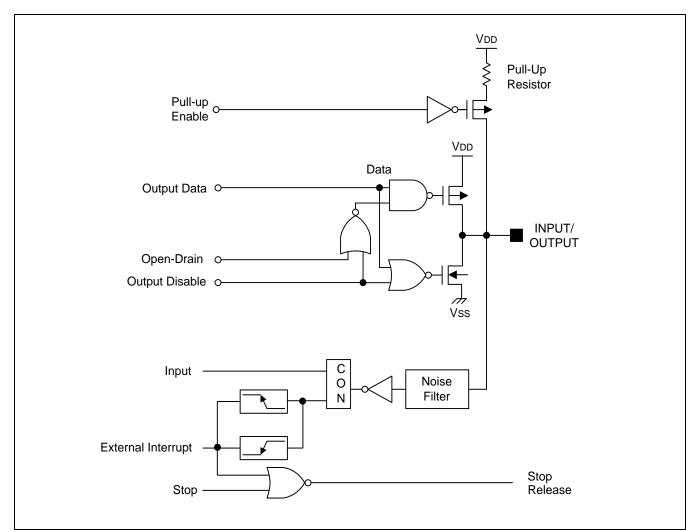


Figure 1-3 External Interrupt Port to Wake Up Stop Mode (Pin Circuit Type 1)

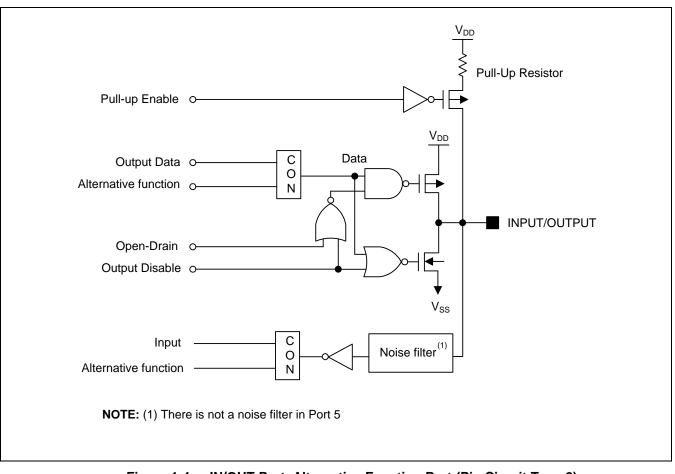


Figure 1-5 IN/OUT Port, Alternative Function Port & Ext. Interrupt (Pin Circuit Type 3)

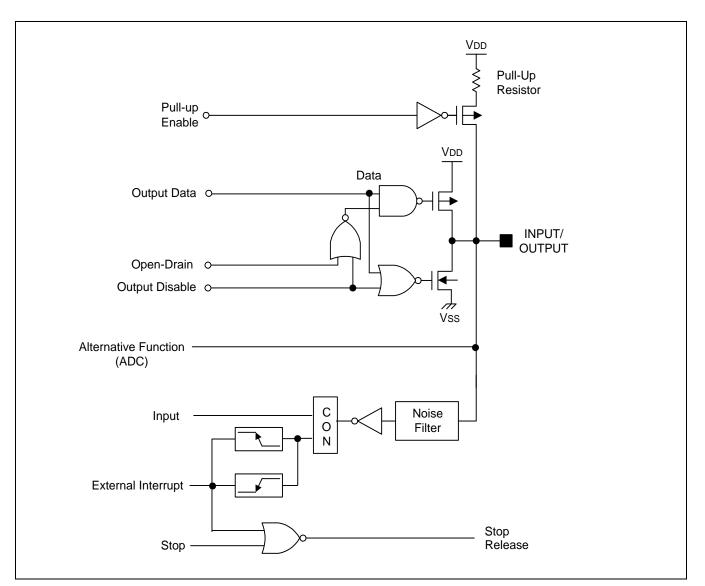


Figure 1-6 IN/OUT Port, Alternative Input Port (ADC) & Ext. Interrupt (Pin Circuit Type 4)

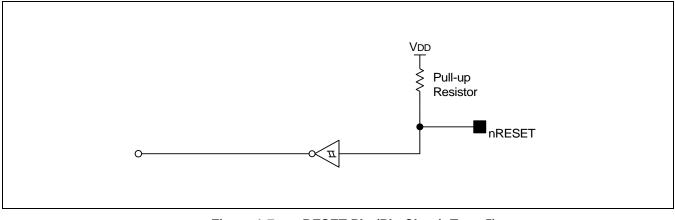


Figure 1-7 nRESET Pin (Pin Circuit Type 5)

			•		
			•		
			•		
			•		
			•		
			•		
			٠		
			٠		

2.1 Overview

2.2 Memory Configuration in Cortex M0 Side

- Program Memory:
 - 128 Kbyte internal program flash (ROM)
- Data Memory:
 - 8 Kbyte internal data memory (SRAM)

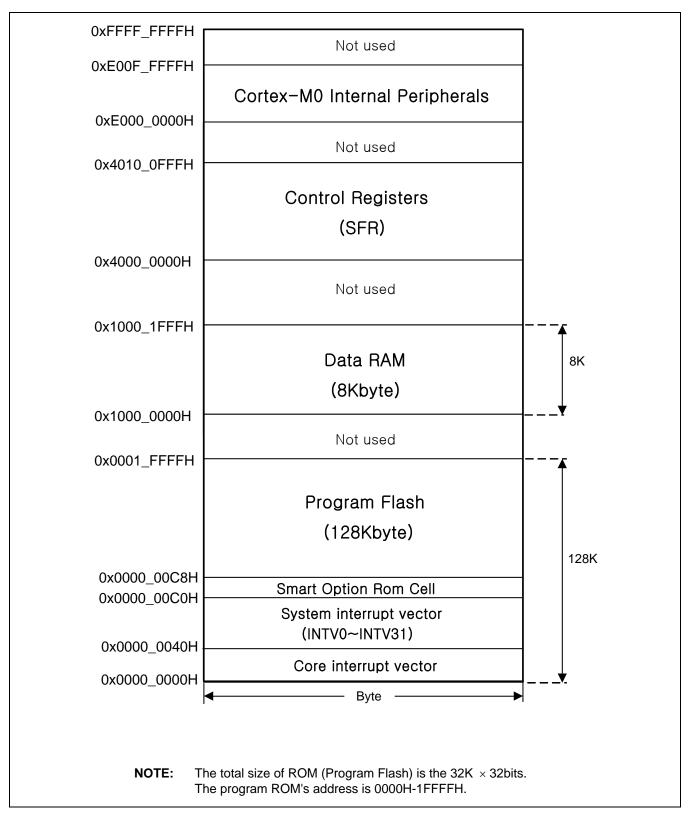


Figure 2-1 Program Memory Configuration

SAMSUNG ELECTRONICS

2.3 Smart Option

Smart option is the program memory option for starting condition of the chip. The program memory addresses used by smart option is 00C0H. The default value of smart option bits in program memory is 0FFH. Before execution the program memory code, user can set the smart option bits according to the hardware option for user to want to select.

Name	Bit	Туре	Description
RSVD	[31:29]	RW	Reserved (Not used)
BTCLK	[28:26]	RW	Reset value of basic timer clock (BTCON.4 .3 .2) selection bit 000= fosc/2 001= fosc/4 010= fosc/16 011= fosc/32 100= fosc/128 101= fosc/256 110= fosc/1024 111= fosc/2048
WDT	[25]	RW	WDT enable/disable bit 0 = WDT is disabled 1 = WDT is enabled
RSVD	[24:22]	RW	Reserved (Not used)
RegionOption	[21]	RW	Usable region selection bit 0 = Use from region 0 to region 2 1 = Use from region 0 to region 3
Debug	[20]	RW	 Debug & MPU enable/disable bit 0 = Debug mode is disabled and MPU is enabled Flash read/write no accessible. Flash will be read 0xBF00H that is NOP instruction. Flash write instructions will be not operated MPU is enabled. User code cannot change MPU enable/disable control bit. 1 = Debug mode is enabled and MPU is disabled Flash read/write accessible MPU is disabled. User code can control MPU block.
DebugAddr	[19:10]	RW	Protected debug region address Debug region end address bits [17:0] = A17 to A0 (128 Kbyte region) Debug region start/end address is located in 0x0000_00C8H(fixed) ≤ DebugAddr<[17:0] NOTE: When debug bit is only set to "0", debug region address is active for protecting debug mode
RegionEndAd dr	[9:0]	RW	Region end address of MPU SFR RegionEndAddr[8:0] = A17 to A8 : Although flash memory 256Kbyte range have A17 to A0 address bits, A9 to A0 is not used If RegionOption is set to 0: This address is set to MPU region1 end register

Name	Bit	Туре	Description	
			If RegionOption is set to 1: This address is set to MPU region2 end register	

NOTE:

- 1. The default value of smart option bits in program memory is 0xFFFF_FFFH
- 2. After CPU operation resumes (BTCNT.5 set), basic timer clock selection bits and watchdog timer enable selection bits can be changed by s/w (Refer to 10-5 page BTCON)

	•	
	•	
	•	
	•	
	•	

3.1 Overview

The Cortex-M0 processor is a very low gate count, highly energy efficient processor that is intended for microcontroller and deeply embedded applications that require an area optimized processor.

3.2 Features

The Processor Features and Benefits are:

- Tight integration of system peripherals reduces area and development costs
- Thumb instruction set combines high code density with 32-bit performance
- Power control optimization of system components
- Integrated sleep modes for low power consumption
- Fast code execution permits slower processor clock or increases sleep mode time
- Hardware multiplier (1 cycle multiplier)
- Deterministic, high-performance interrupt handling for time-critical applications
- Serial wire debug reduces the number of pins required for debugging
- ARM architecture
 - The Nested Vectored Interrupt Controller (NVIC), Debug and processor are implementations of the ARMv6-M architecture profile. See the ARMv6-M ARM

3.3 Interfaces

The interfaces included in the processor for external access include:

- External AHB-lite interface
- Debug Access Port (DAP)

For information about cortex-M0 architectural, see the cortex-M0 technical reference manual or <u>www.arm.com</u>.

	•	
	•	

4.1 Overview

The NVIC and Cortex-M0 processor enable low latency interrupt processing and provide efficient service for late arriving interrupts. There are 32 individual interrupt vector sources including 16 cortex-M0 own interrupt sources.

4.2 Features

- Cortex-M0's NVIC interface
- 32 interrupt vector sources (not including 16 cortex-M0 own interrupt vector sources)
- Low latency exception and interrupt handling
- Power management control
- Implement cortex-M0 system control registers

The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts. All interrupts including the core exceptions are managed by the NVIC. For more information on exceptions and NVIC programming, see ARMv6-M ARM Manual.

4.3 Interrupt Sources & Interrupt Vector

Interrupt vector table includes Cortex-M0's processor interrupt vectors and vectors for S3FN60D interrupt sources.

Vector Category	Address	Vector	Description
	0x0000_0000	Reserved	Starting value of the MSP
	0x0000_0004	Reset	_
	0x0000_0008	NMI	Non-maskable interrupt
	0x0000_000C Ha		All class of fault
	0x0000_0010	MemManage	Memory management fault
	0x0000_0014	BusFault	Pre-fetch fault, memory access fault
	0x0000_0018	UsageFault	Undefined instruction or illegal state
Coro Interrupt Vector	0x0000_001C	Reserved	-
Core Interrupt Vector	0x0000_0020	Reserved	-
	0x0000_0024	Reserved	_
	0x0000_0028	Reserved	_
	0x0000_002C	SVCall	System service call via SWI instruction
	0x0000_0030	Debug Monitor	Debug monitor
	0x0000_0034	Reserved	_
	0x0000_0038	PendSV	Pendable request for system service
	0x0000_003C	SysTick	System tick timer
System Interrupt Vector	0x0000_0040 to 0x0000_00C0	INTV0 to INTV31	Vectors for interrupt sources generated by peripherals and external input signals

Table 4-1	Core Exception Vector
-----------	------------------------------

4.4 System Interrupt Vector

Table 4-2 System Interrupt Vectors & Sources
--

Number	Address	Vector	Description
0	0x0000_0040	MPUINT	MPU abort
1	0x0000_0044	TAINT	Timer A P_END/MATCH/OVERFLOW/CAPTURE
2	0x0000_0048	T1INT	Timer 1 P_END/MATCH/OVERFLOW/CAPTURE
3	0x0000_004C	SPI0INT	SPI0 interrupt
4	0x0000_0050	SPI1INT	SPI1 interrupt
5	0x0000_0054	I2C0INT	I2C0 interrupt
6	0x0000_0058	I2C1INT	I2C1 interrupt
7	0x0000_005C	BTOVF	Basic timer overflow
8	0x0000_0060	ADC_INT	ADC interrupt
9	0x0000_0064	UARTTXINT	UART data transmit interrupt
10	0x0000_0068	UARTRXINT	UART data receive interrupt
11	0x0000_006C	UARTERRINT	UART data error interrupt
12	0x0000_0070	T2INT	Timer 2 P_END/MATCH/OVERFLOW/CAPTURE
13	0x0000_0074	FRTINT	FRT MATCH
14	0x0000_0078	DMAINT	DMA interrupt
15	0x0000_007C	VUSB_DET	VUSB detect
16	0x0000_0080	INT0	External pin interrupt P0.0/P0.1
17	0x0000_0084	INT1	External pin interrupt P0.2/P0.3
18	0x0000_0088	INT2	External pin interrupt P0.4/P0.5
19	0x0000_008C	INT3	External pin interrupt P0.6/P0.7
20	0x0000_0090	INT4	External pin interrupt P2.0/P2.1
21	0x0000_0094	INT5	External pin interrupt P2.2/P2.3
22	0x0000_0098	INT6	External pin interrupt P2.4/P2.5
23	0x0000_009C	INT7	External pin interrupt P2.6/P2.7
24	0x0000_00A0	INT8	External pin interrupt P1.0/P1.1/P1.2/P1.3
25	0x0000_00A4	INT9	External pin interrupt P1.4/P1.5/P1.6/P1.7
26	0x0000_00A8	INT10	External pin interrupt P4.0/P4.1/P4.2/P4.3
27	0x0000_00AC	INT11	External pin interrupt P4.4/P4.5/P4.6/P4.7
28	0x0000_00B0	CAINT	Counter A interrupt
29	0x0000_00B4	USBINT	USB Resume/Suspend/Reset interrupt
30	0x0000_00B8	USBSOF	USB SOF interrupt
31	0x0000_00BC	USBEP	USB Endpoint 0/1/2/3/ interrupt

NOTE:

- 1. Interrupt mask and pending status are controlled to SFR of each peripherals.
- 2. All interrupts vectors are controlled to NVIC of Cortex-M0. (Please refer to Cortex-M0 NVIC manual for details) The control registers of NVIC can control all interrupts.

	•	
	•	
	•	
	•	
	•	
	•	

5 Memory Map

5.1 Overview

To support the control of peripheral hardware, the address for peripheral control registers are memory-mapped to the area higher than 0x4010_0FFFH. Memory mapping lets you use a mnemonic as the operand of an instruction in place of the specific memory location.

In this section, detailed descriptions of the S3FN60D control registers are presented in an easy-to-read format.

5.2 Default Memory Map

The S3FN60D has memory space allocation as below.

#	Address	Memory
	0xFFFF_FFFF to 0xE010_0000	Reserved
4	0xE00F_FFFF to 0xE000_0000	Cortex-M0 internal peripherals
	Reserved	Reserved
3	0x4010_0FFF to 0x4000_0000	S3FN60D's special function registers
	Reserved	Reserved
2	0x1000_1FFF to 0x1000_0000	8 Kbytes internal SRAM
	Reserved	Reserved
1	0x0001_FFFF to 0x0000_0000	128 Kbytes internal program flash

Table 5-1S3FN60D's Memory Map

5.3 Core & Peripheral Special Function Register Map

 Table 5-2
 Core Special Function Register Map

Base Address	Peripheral	Description
0xE00F_F000	ROM Table	ROM memory table
0xE004_2000	External PPB	Private Peripheral Bus
0xE004_1000	Reserved	_
0xE004_0000	Reserved	_
0xE000_F000	Reserved	_
0xE000_E000	SCS	System Control Space
0xE000_3000	Reserved	_
0xE000_2000	BPU	Flash Patch & Break pint
0xE000_1000	DWT	Data Watch point & Trace
0xE000_0000	Reserved	_

Table 5-3	Peripheral Memory Ma	р
-----------	----------------------	---

Function Blocks	Base Address	Peripheral	Description
USB	0x4010_0000	USB	USB controller
I2C1	0x400F_1000	I2C1	Inter-integrated Circuit 1
I2C0	0x400F_0000	I2C0	Inter-integrated Circuit 0
SPI1	0x400E_1000	SPI1	Serial Peripheral Interface 1
SPI0	0x400E_0000	SPI0	Serial Peripheral Interface 0
UART	0x400D_0000	UART	Universal Asynchronous Receiver/Transmitter
COUNTER A	0x400C_0000	CA	Counter A
TIMER/COUNTER A	0x400B_0000	TA	Timer/Counter A
FRT	0x400A_0000	FRT	Free Running Timer
TIMER/COUNTER 2	0x4009_0000	T2	Timer/Counter 2
TIMER/COUNTER 1	0x4008_0000	T1	Timer/Counter 1
GPIO	0x4007_0000	GPIO	General Purpose IO group
ADC	0x4006_0000	ADC	Analog to Digital Converter
BASIC TIMER&WDT	0x4005_0000	BT	Basic Timer & WDT
MPU	0x4004_0000	MPU	Memory Protection Unit
DMA	0x4003_0000	DMA	Direct Memory Access controller
SYSTEM	0x4002_0000	SYS	System register
MEMORY	0x4001_0000	MEM	Memory

Block	Address	0	4	8	С
MEMORY	0x4001_0000	FMCON	FMKEY	FMADDR	
	0x4002_0000	CLKCON0	CLKCON1	PLLPMS	PLLLCNT
0.07514	0x4002_0010	PLLLOCK	SWRST	PWRCHG	_
SYSTEM	0x4002_0020	RESETID	_	_	_
	0x4002_0030	LVDCON	LVDSEL	_	_
	0x4003_0000	DISRC	DISRCC	DIDST	DIDSTC
DMA	0x4003_0010	DMACON	DSTAT	DCSRC	DCDST
	0x4003_0020	DMASKTRIG	DMAREQSEL	_	_
	0x4004_0000	MPUCON	Reserved	Reserved	Reserved
MDU	0x4004_0010	MPUSTART_R0	MPUEND_R0	MPUEND_R1	MPUEND_R2
MPU	0x4004_0020	MPUEND_R3	MPUSTART_R4	MPUEND_R4	Reserved
	0x4004_00A0	MPU_IRQ_MON	Reserved	Reserved	Reserved
BASIC TIMER & WDT	0x4005_0000	BTCON	BTCNT	WDTCNT	_
ADC	0x4006_0000	ADCCON	ADDATA	ADC_DMACR	_
	0x4007_0000	P0CONH	P0CONL	P0EDGE	P0INT
	0x4007_0010	P0PND	P0PUR	Reserved	PODATA
	0x4007_0100	P1CONH	P1CONL	P1EDGE	P1INT
	0x4007_0110	P1PND	P1PUR	Reserved	P1DATA
	0x4007_0200	P2CONH	P2CONL	P2EDGE	P2INT
	0x4007_0210	P2PND	P2PUR	Reserved	P2DATA
GPIO	0x4007_0300	P3CONH	P3CONL	Reserved	Reserved
GPIO	0x4007_0300	Reserved	P3PUR	Reserved	P3DATA
	0x4007_0400	P4CONH	P4CONL	P4EDGE	P4INT
	0x4007_0410	P4PND	P4PUR	Reserved	P4DATA
	0x4007_0500	P5CONH	P5CONL	Reserved	Reserved
	0x4007_0510	Reserved	P5PUR	P5MODE	P5DATA
	0x4007_0600	Reserved	P6CONL	Reserved	Reserved
	0x4007_0610	Reserved	P6PUR	Reserved	P6DATA
	0x4008_0000	T1_IDR	T1_CSSR	T1_CEDR	T1_SRR
	0x4008_0010	T1_CSR	T1_CCR	T1_SR	T1_IMSCR
TIMER/COUN	0x4008_0020	T1_RISR	T1_MISR	T1_ICR	T1_CDR
TER 1	0x4008_0030	T1_CSMR	T1_PRDR	T1_PULR	T1_UCDR
	0x4008_0040	T1_UCSMR	T1_UPRDR	T1_UPULR	T1_CUCR
	0x4008_0050	T1_CDCR	T1_CVR	_	—
TIMER/COUN	0x4009_0000	T2_IDR	T2_CSSR	T2_CEDR	T2_SRR

Table 5-4 Memory Map of SFR

SAMSUNG ELECTRONICS

Block	Address	0	4	8	С
TER 2	0x4009_0010	T2_CSR	T2_CCR	T2_SR	T2_IMSCR
	0x4009_0020	T2_RISR	T2_MISR	T2_ICR	T2_CDR
	0x4009_0030	T2_CSMR	T2_PRDR	T2_PULR	T2_UCDR
	0x4009_0040	T2_UCSMR	T2_UPRDR	T2_UPULR	T2_CUCR
	0x4009_0050	T2_CDCR	T2_CVR	_	-
	0x400A_0000	FRT_IDR	FRT_CEDR	FRT_SRR	FRT_CR
FRT	0x400A_0010	FRT_SR	FRT_IMSCR	FRT_RISR	-
	0x400A_0020	FRT_ICR	FRT_DR	FRT_DBR	FRT_CVR
	0x400B_0000	TA_IDR	TA_CSSR	TA_CEDR	TA_SRR
	0x400B_0010	TA_CSR	TA_CCR	TA_SR	TA_IMSCR
TIMER/	0x400B_0020	TA_RISR	TA_MISR	TA_ICR	TA_CDR
COUNTER A	0x400B_0030	TA_CSMR	TA_PRDR	TA_PULR	TA_UCDR
	0x400B_0040	TA_UCSMR	TA_UPRDR	TA_UPULR	TA_CUCR
	0x400B_0050	TA_CDCR	TA_CVR	_	-
COUNTER A	0x400C_0000	CACONH	CADATAL	CACON1	CACON0
	0x400D_0000	ULCON	UCON	USTAT	UTXH
UART	0x400D_0010	URXH	UBRDIV	_	-
	0x400D_0020	UDMACR	_	_	—
	0x400E_0000	SPI0_CR0	SPI0_CR1	SPI0_DR	SPI0_SR
	0x400E_0010	SPI0_CPSR	SPI0_IMSC	SPI0_RIS	SPI0_MIS
SPI	0x400E_0020	SPI0_ICR	SPI0_DMACR	_	_
351	0x400E_1000	SPI1_CR0	SPI1_CR1	SPI1_DR	SPI1_SR
	0x400E_1010	SPI1_CPSR	SPI1_IMSC	SPI1_RIS	SPI1_MIS
	0x400E_1020	SPI1_ICR	SPI1_DMACR	_	—
	0x400F_0000	I2C0_IDR	I2C0_CEDR	I2C0_SRR	I2C0_CR
	0x400F_0010	I2C0_MR	I2C0_SR	I2C0_IMSCR	I2C0_RISR
	0x400F_0020	I2C0_MISR	I2C0_SDR	I2C0_SSAR	I2C0_HSDR
I2C	0x400F_0030	I2C0_DMACR	_	-	-
120	0x400F_1000	I2C1_IDR	I2C1_CEDR	I2C1_SRR	I2C1_CR
	0x400F_1010	I2C1_MR	I2C1_SR	I2C1_IMSCR	I2C1_RISR
	0x400F_1020	I2C1_MISR	I2C1_SDR	I2C1_SSAR	I2C1_HSDR
	0x400F_1030	I2C1_DMACR	_	_	—
	0x4010_0000	USBFA	USBPM	USBINTMON	USBINTCON
	0x4010_0010	USBFN	USBEPLNUM	_	_
USB	0x4010_0020	USBEP0CSR	USBEP1CSR	USBEP2CSR	USBEP3CSR
	0x4010_0030	USBEP4CSR			
	0x4010_0040	USBEP0WC	USBEP1WC	USBEP2WC	USBEP3WC

Block	Address	0	4	8	С
	0x4010_0050	USBEP4WC	—	-	_
	0x4010_0060	USBNAKCON1	USBNAKCON2	-	-
	0x4010_0070	-	-	-	-
	0x4010_0080	USBEP0	USBEP1	USBEP2	USBEP3
	0x4010_0090	USBEP4	-	_	-
	0x4010_00A0	PROGREG	-	-	-
	0x4010_00B0	_	FSPULLUP	_	-

	•	
	•	
	•	
	•	

6.1 Cortex-M0 Instruction Set Summary

The processor implements the ARMv6-M Thumb instruction set, including a number of 32-bit instructions that use Thumb-2 technology. The ARMv6-M instruction set comprises:

- All of the 16-bit Thumb instructions from ARMv7-M excluding CBZ, CBNZ and IT
- The 32-bit Thumb instructions BL, DMB, DSB, ISB, MRS and MSR

<u>*Table 6-1*</u> shows the cortex-M0 instructions and their cycle counts. The cycle counts are based on a system with zero wait-states.

Operation	Description	Assembler	Cycles
	8-bit immediate	MOVS Rd, # <imm></imm>	1
Move	Lo to Lo	MOVS Rd, Rm	1
wove	Any to Any	MOV Rd, Rm	1
	Any to PC	MOV PC, Rm	3
	3-bit immediate	ADDS Rd, Rn, # <imm></imm>	1
	All registers Lo	ADDS Rd, Rn, Rm	1
	Any to Any	ADD Rd, Rd, Rm	1
	Any to PC	ADD PC, PC, Rm	3
Add	8-bitimmediate	ADDS Rd, Rd, # <imm></imm>	1
	With carry	ADCS Rd, Rd, Rm	1
	Immediate to SP	ADD SP, SP, # <imm></imm>	1
	Form address from SP	ADD Rd, SP, # <imm></imm>	1
	Form address from PC	ADR Rd, <label></label>	1
	Lo and Lo	SUBS Rd, Rn, Rm	1
	3-bit immediate	SUBS Rd, Rn, # <imm></imm>	1
Subtract	8-bit immediate	SUBS Rd, Rn, # <imm></imm>	1
Subtract	With carry	SBCS Rd, Rd, Rm	1
	Immediate from SP	SUB SP,SP, # <imm></imm>	1
	Negate	RSBS Rd, Rn, #0	1
Multiply	Multiply	MULS Rd, Rm, Rd	1 or 32 ⁽³⁾
	Compare	CMP Rn, Rm	1
Compare	Negative	CMN Rn, Rm	1
	Immediate	CMP Rn, # <imm></imm>	1
	AND	ANDS Rd, Rd, Rm	1
	Exclusive OR	EORS Rd, Rd, Rm	1
	OR	ORRS Rd, Rd, Rm	1
Logical	Bit clear	BICS Rd, Rd, Rm	1
	Move NOT	MVNS Rd, Rm	1
	AND test	TST Rn, Rm	1
	Logical shift left by immediate	LSLS Rd, Rm, # <shift></shift>	1
	Logical shift left by register	LSLS Rd, Rd, Rs	1
Shift	Logical shift right by immediate	LSRS Rd, Rm, # <shift></shift>	1
	Logical shift right by register	LSRS Rd, Rd, Rs	1
	Arithmetic shift right	ASRS Rd, Rm, # <shift></shift>	1

Table 6-1	Cortex-M0 Instruction Summary
-----------	--------------------------------------

Operation	Description	Assembler	Cycles
	Arithmetic shift right by register	ASRS Rd, Rd, Rs	1
Rotate	Rotate right by register	RORS Rd, Rd, Rs	1
	Word, immediate offset	LDR Rd, [Rn, # <imm>]</imm>	2
	Halfword, immediate offset	LDRH Rd, [Rn, # <imm>]</imm>	2
	Byte, Immediate offset	LDRB Rd, [Rn, # <imm>]</imm>	2
	Word, register offset	LDR Rd, [Rn, Rm]	2
	Halfword, register offset	LDRH Rd, [Rn, Rm]	2
(1)	Signed halfword, register offset	LDRSH Rd, [Rn, Rm]	2
Load ⁽¹⁾	Byte, register offset	LDRB Rd, [Rn, Rm]	2
	Signed byte, register offset	LDRSB Rd, [Rn, Rm]	2
	PC-relative	LDR Rd, <label></label>	2
	SP-relative	LDR Rd, [SP, # <imm>]</imm>	2
	Multiple, excluding base	LDM Rn!, { <loreglist>}</loreglist>	1 + N ⁽⁴⁾
	Multiple, including base	LDM Rn, { <loreglist>}</loreglist>	1 + N ⁽⁴⁾
	Word, immediate offset	STR Rd, [Rn, # <imm>]</imm>	2
	Halfword, immediate offset	STRH Rd, [Rn, # <imm>]</imm>	2
	Byte, immediate offset	STRB Rd, [Rn, # <imm>]</imm>	2
e (2)	Word, register offset	STR Rd, [Rn, Rm]	2
Store ⁽²⁾	Halfword, register offset	STRH Rd, [Rn, Rm]	2
	Byte, register offset	STRB Rd, [Rn, Rm]	2
	SP-relative	STR Rd, [SP, # <imm>]</imm>	2
	Multiple	STM Rn! { <loreglist>}</loreglist>	1 + N ⁽⁴⁾
5 .	Push	PUSH { <loreglist>}</loreglist>	1 + N ⁽⁴⁾
Push	Push with link register	PUSH { <loreglist>, LR}</loreglist>	1 + N ⁽⁴⁾
_	Рор	POP { <loreglist>}</loreglist>	1 + N ⁽⁴⁾
Рор	Pop and return	POP { <loreglist>, PC}</loreglist>	4 + N ⁽⁵⁾
	Conditional	B <cc> <label></label></cc>	1 or 3 ⁽⁶⁾
	Unconditional	B <label></label>	3
Branch	With link	BL <label></label>	4
	With exchange	BX Rm	3
	With link and exchange	BLX Rm	3
	Signed halfword to word	SXTH Rd, Rm	1
-	Signed byte to word	SXTB Rd, Rm	1
Extend	Unsigned halfword	UXTH Rd, Rm	1
	Unsigned byte	UXTB Rd, Rm	1
Reversed	Bytes in word	REV Rd, Rm	1

Operation	Description	Assembler	Cycles
	Bytes in both halfwords	REV16 Rd, Rm	1
	Signed bottom halfword	REVSH Rd, Rm	1
	Supervisor Call	SVC <imm></imm>	_ (7)
	Disable interrupts	CPSID I	1
Ctata abanga	Enable interrupts	CPSIE I	1
State change	Read special register	MRS Rd, <specreg></specreg>	4
	Write special register	MSR <specreg>, Rn</specreg>	4
	Breakpoint	BKPT <imm></imm>	_ (7)
	Send event	SEV	1
	Wait for event	WFE	2 ⁽⁸⁾
Hint	Wait for interrupt	WFI	2 ⁽⁸⁾
	Yield	YIELD ⁽⁹⁾	1
	No operation	NOP	1
	Instruction synchronization	ISB	4
Barriers	Data memory	DMB	4
	Data synchronization	DSB	4

NOTE:

- 1. Load: Flash memory read instruction
- 2. Store: Flash memory write instruction (Only Word programmable)
- 3. Depends on multiplier implementation
- 4. N is the number of elements
- 5. N is the number of elements in the stack-pop list including PC and assumes load or store does not generate a HardFault exception
- 6. 3 if taken, 1 if not-taken
- 7. Cycle count depends on core and debug configuration
- 8. Excludes time spent waiting for an interrupt or event
- 9. Executes an NOP

See the ARMv6-M ARM for more information about the ARMv6-M Thumb instructions.

	•	
	•	

Clock Circuits

7.1 Overview

This chapter describes the management for clock and power according to the operation mode.

The clock frequency for the S3FN60D can be generated by an external crystal or supplied by an external clock source. The clock frequency for the S3FN60D can range from 1 MHz to 20 MHz. The maximum CPU clock frequency, as determined by CLKCON register, is 20 MHz. The X_{IN} and X_{OUT} pins connect the external oscillator/ceramic resonator or clock source to the on-chip clock circuit.

7.2 Features

7.2.1 System Clock Circuit

The system clock circuit has the following components:

- External crystal or ceramic resonator oscillation source (or an external 1.8 V clock)
- Oscillator stop and wake-up functions
- Programmable frequency divider for the CPU clock (MCLK divided by 1 to 64)
- System clock control register, CLKCON0
- Internal ring oscillator control register, CLKCON1
- Programmable PLL operational frequency up to 48 MHz, PLLPMS
- For stable high speed clock generation, PLL lock status register and PLL lock count value register, PLLLOCK, PLLLCNT

7.2.2 Power Supply Selection Circuit

- VBAT is default power source
- Power source can be changed to VUSB when USB is attached
- Power source can be switched to VBAT via PWRCHG register setting while USB is attached
- After changing to VBAT, USB can still operate

7.2.3 PLL Clock Circuit

The PLL clock circuit has the following components:

- PLL P, M, S value register, PLLOMS
- PLL lock count register, PLLLCNT

7.3 Block Diagram

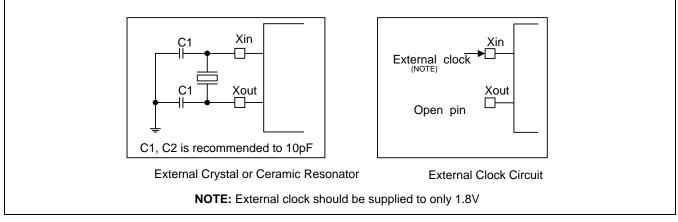


Figure 7-1 Main Oscillator Circuit

Main oscillator circuit is supplied to internal power 1.8 V. If using external clock directly, the clock should be supplied to 1.8 V. We recommend that main oscillator is used to a crystal with C1, C2 = 10 pF or resonator with 10 pF cap.

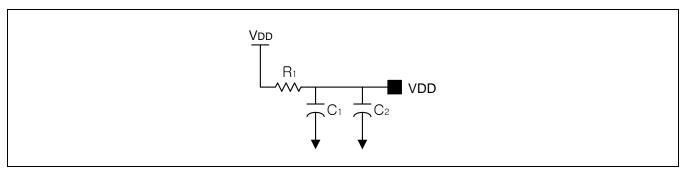


Figure 7-2 Power Circuit (V_{DD})

Typically, application systems have a resister and two separate capacitors across the power pins. R1 and C1 located as near to the MCU power pins as practical to suppress high-frequency noise. C2 should be a bulk electrolytic capacitor to provide bulk charge storage for the overall system. We recommend that R1 = 10 Ω , C1 = 0.1 μ F and C2 = 470 μ F.

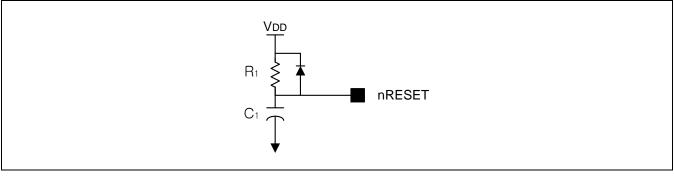


Figure 7-3 nRESET Circuit

When the nRESET pin input goes to high, the reset operation is released. External reset circuit has to be attached in the application systems for initializing. We recommend that R1 = 1 M Ω and C1 = 0.1 μ F.

7.4 Clock Status during Power-down Modes

The two power-down modes, Stop mode and idle mode, affect the system clock as follows:

- Stop mode (Deep sleep mode) entry using Wait for Interrupt (WFI), Wait for Event (WFE) instructions after SLEEPDEEP bit (System Control Register at 0xE000ED10) set to high, or the return from interrupt sleep-onexit feature. In Stop mode, the main oscillator is halted. When stop mode is released, the oscillator starts. Sources to release are reset or interrupts (INT0-INT11, FRTINT, VUSB_DET and USBINT)
- In Idle mode (Sleep mode), the internal clock signal is gated away from the CPU, but continues supplying to the interrupt structure, timer A, 1, 2, counter A and so on. Idle mode is released by a reset or by an interrupt (External or internally generated)

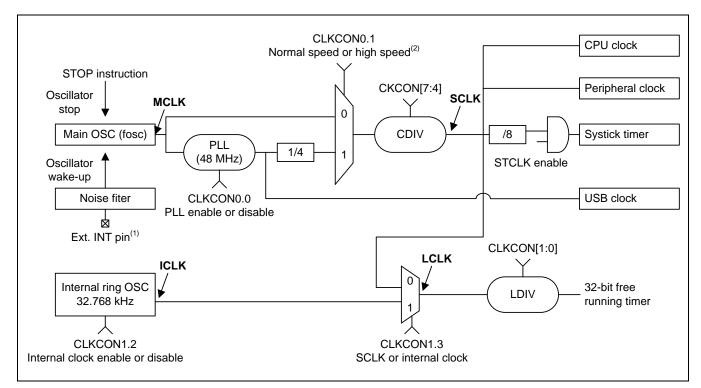


Figure 7-4 System Clock Circuit Diagram

NOTE:

- 1. An external interrupt with an RC-delay noise filter (for the S3FN60D INT0 to INT11) is fixed to release stop mode and wake up the main oscillator.
- 2. After PLL enabled, the user has to wait the PLL stabilization time. And then the user has to select the PLL mode. The stabilization time of PLL is Max. 200 μ s.

7.5 Clock Control State Machine

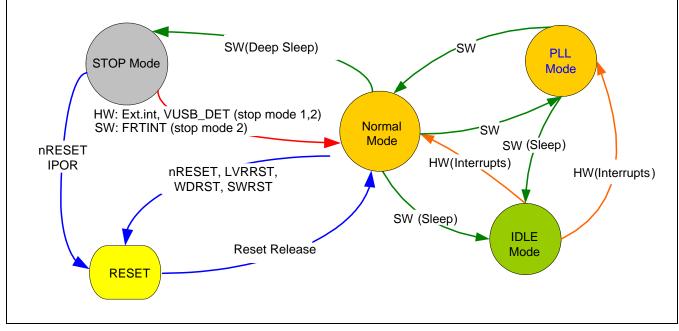


Figure 7-5 Clock Control State Machine

7.6 Power Source Changing Circuit

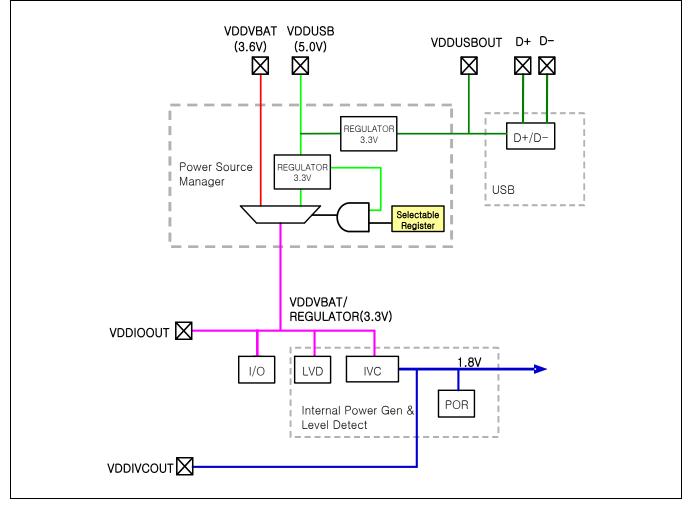


Figure 7-6 Power Source Changing Circuit

7.6.1 Power Supply Selection

- VBAT is default power source
- Even USB is attached, power source is VBAT
- If USB is attached when No power source, N60D do not operate
- Power source can be switched to VBAT or VUSB via register setting while USB is attached
- Even power sourced from VBAT, USB still operates
- When USB is detached, power supply is changed back to VBAT automatically

NOTE: If VBAT is not supplied at first, CPU and USB block do not operate although VBUS is attached.

7.7 PLL (Phase Locked Loop)

The PLL in the clock generator synchronizes the output signal with the input reference signal in terms of frequency as well as phase. The output clock frequency fout is related to the reference input clock frequency Fin by the following equation:

```
\begin{split} F_{\text{OUT}} &= ((m + 8) \times \text{FIN}) / ((p + 2) \times 2^{\text{S}}) \text{ (when LFPASS = 0)} \\ F_{\text{OUT}} &= ((m + 8) \times F_{\text{IN}}) / 2^{\text{S}} \text{ (when LFPASS = 1)} \end{split}
```

7.8 Change PLL Settings in Normal Operation Mode

If PLL power supply is provided firstly. RESETB (CLKCON0[0] PLL_EN) must always be set following instruction. Even after PLL power supply becomes stable at t1. RESETB must keep the logical low for enough time ($\Delta t > 1 \mu s$). Whenever any register value is updated, PLL needs a period called "Locking Time" to generate a target frequency. Actually PLL generates an unknown frequency during the "Locking Time". However, PLL behavioral model is described to generate the low state during this period to prevent a simulation problem. It is recommended to disable PLL clock path during "Locking Time = Max 200 μ s".

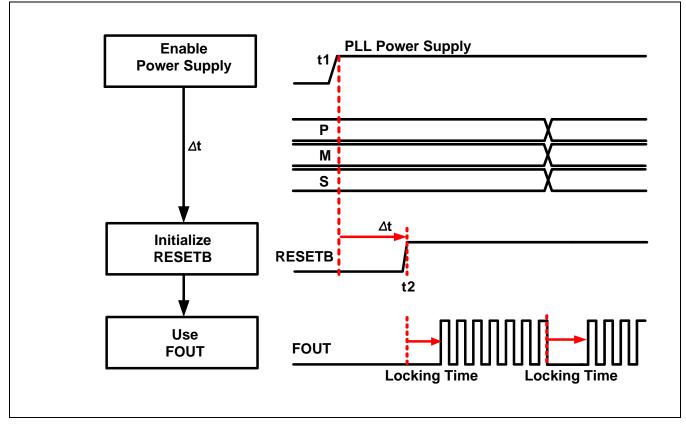


 Figure 7-7
 Timing Diagram of Clock Change in Normal Mode

7.9 Power Management

After a reset, the slowest clock (MCLK divided by 64) is selected as SCLK and internal ring oscillator is disabled by default.

7.9.1 Power Modes

NORMAL mode is used to supply SCLK to CPU as well as all peripherals. In this case the power consumption will be increased when all peripherals are enabled.

PLL mode is used to supply PLLCLK/4 (12 MHz) to CPU as well as all peripherals.

IDLE mode is one of the low power modes. In idle mode disconnecting the clock to CPU halts the operation and some peripherals remain active by SW.

STOP mode makes all logic stop basically. As the low power mode, the power consumption can be the lowest. The wake-up from STOP mode can be done by activating external interrupt (INT0 to INT11), FRT interrupt (FRTINT), USB detected interrupt (VUSB_DET), USB resume and USB reset interrupt (USBINT) or a chip reset.

7.9.2 Low Power Mode and Wake-Up

There are two low-power modes that are IDLE and STOP mode.

- WFE: Wait For Event
- WFI: Wait For Interrupt

7.9.3 Enter IDLE Mode

The Idle mode is applicable when wake-up with the minimum latency is required. The clock supplied to cortex-M0 core is disconnected. The status of oscillator and PLL is fully configurable in the idle mode

- Entry condition
 - IDLE (Sleep-now): Execute (WFE or WFI) instruction
 - IDLE (Sleep-on-exit): Set SLEEPONEXIT bit of the System Control Register (Cortex-M0 core register)
 → Execute (WFE or WFI) instruction entering IDLE Mode
- Entry sequence
 - Configure wakeup source
 - Clock source configuration
 - Oscillator and PLL configuration
 - Execute entry condition

The sleep-on-exit bit (SLEEPONEXIT) is located in System Control Register of Cortext-M0 NVIC. When it is set, the processor enters into the Idle mode after exiting from the interrupt service routine with the lowest priority.

7.9.4 Exit IDLE Mode

- Exit condition:
 - IDLE (Sleep-now): Any of Interrupts or wake-up events (Peripherals or external pins)
 - IDLE (Sleep-on-exit): Any of interrupts or wake-up events (Peripherals or external pins) or reset of cortex-M0 core control register bit 1.

7.9.5 Enter STOP Mode

The Stop mode is based upon the SLEEPDEEP in cortex-M0 core. The wall clocks stop operating. However, the status of internal ring oscillator (ICLK, 32.768 kHz) is configurable. The clock supply to MCLK is disconnected in entry of stop mode and connected in exit of stop mode. Since FCLK is disconnected in stop mode, the WIC shall always be enabled. It can be configured by WIC bit in CM_CR register.

- Entry Condition
 - STOP: Set SLEEPDEEP bit of System Control Register → Execute (WFE or WFI) instruction
 - STOP (Sleep-on-exit): Set SLEEPONEXIT bit of the System Control Register (Cortex-M0 core register)
 → Set SLEEPDEEP bit of System Control Register → Execute (WFE or WFI) instruction
- Entry Sequence
 - Configure wakeup sources
 - Enable/Disable internal ring oscillator (ICLK, 32.768 kHz) for FRT which generates a periodic timer interrupt
 - Execute entry condition

The sleep-on-exit bit (SLEEPONEXIT) is located in System Control Register of Cortext-M0 NVIC. When it is set with WFE or WFI and SLEEPDEEP = 1, the processor enters into the Stop mode after exiting from the interrupt service routine with the lowest priority.

7.9.6 Exit STOP Mode

- Exit Condition: Defined wakeup source
 - External interrupt (INT0 to INT11)
 - FRT interrupt (FRTINT)
 - USB detected interrupt (VUSB_DET), USB suspend, resume and reset interrupt (USBINT),
 - External reset by nRESET and internal reset by IPOR.

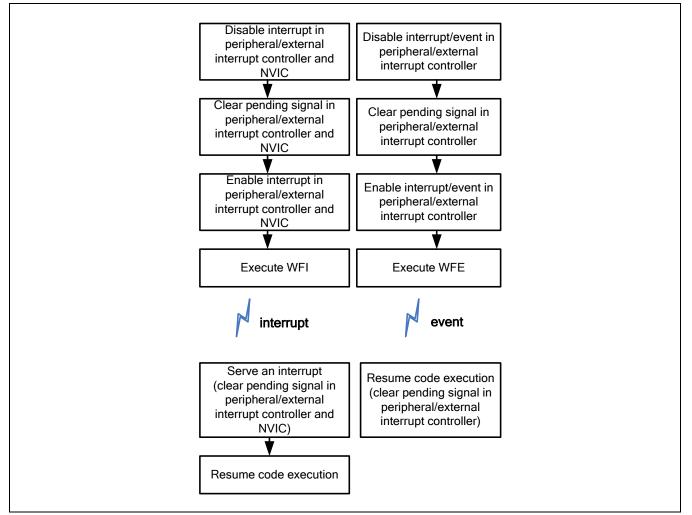


Figure 7-8 Different Handling Process for Interrupt and Event in Idle or Stop Mode

7.10 Register Description

7.10.1 Register Map Summary

• Base Address = 0x4002_0000

Register	Offset	Description	Reset Value
CLKCON0	0x0000	System clock control register	0x0000_0000
CLKCON1	0x0004	Internal ring oscillator control register	0x0000_0000
PLLPMS	0x0008	PLL PMS value register	0x0000_0000
PLLLCNT	0x000C	PLL lock count value register	0x0000_0000
PLLLOCK	0x0010	PLL lock status register	0x0000_0000
SWRST	0x0014	Chip reset by S/W	0x0000_0000
PWRCHG	0x0018	Power source changing register	0x0000_0001

7.10.1.1 CLKCON0

- Base Address: 0x4002_0000
- Address = Base Address + 0x0000, Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											RSVD												SYSTICK_EN			CDIV		RSVD	LFPASS	CLK_SEL	PLL_EN
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R	R W	R W	R W

Name	Bit	Туре					Description	Reset Value			
RSVD	[31:9]	R	Reser	Reserved (Not used)							
SYSTICK_EN	[8]	RW	Clock 0 = ST 1 = ST	TCLI	0						
			Divide freque			ction	bits for CPU and Peripheral clock				
			0	0	0	0	MCLK/64				
			0	0	0	1	MCLK/32				
			0	0	1	0	MCLK/24				
			0	0	1	1	MCLK/16				
			0	1	0	0	MCLK/12				
CDIV	[7:4]	RW	0	1	0	1	MCLK/8	0			
	[]		0	1	1	0	MCLK/6	Ũ			
			0	1	1	1	MCLK/4				
			1	0	0	0	MCLK/2				
			1	0	0	1	Fosc (non-divided)				
				Oth	ers		Not used for S3FN60D				
			select	ed a	is SC	CLK.	t, the slowest clock (Divided by 64) is To select faster clock speeds, load the to CDIV.				
RSVD	[3]	R	Reser	ved	(Not	use	(k	0			
LFPASS	[2]	RW	0 = LF	PAS	SS m	node	lection bit ⁽¹⁾ disable enable	0			
CLK_SEL	[1]	RW	Clock	spe	ed s	electi	on bit	0			

Name	Bit	Туре	Description	Reset Value
			0 = Normal speed mode 1 = High speed mode	
PLL_EN	[0]	RW	PLL enable bit (RESETB) ⁽²⁾ 0 = PLL disable (Power down enable) 1 = PLL enable (Power down disable)	0

NOTE:

1. If LFPASS = 1, F_{OUT} = ((m + 8) \times $F_{\text{IN}})/2^{\text{S}}$

If LFPASS = 0, F_{OUT} = ((m + 8) × F_{IN})/((p + 2) × 2^S)

 RESETB signal is provided for the power down of the PLL. If RESETB is 0, power down mode is enabled. When RESETB becomes 0 from 1 and locking time passes, the PLL starts normal operation.

7.10.1.2 CLKCON1

- Base Address: 0x4002_0000
- Address = Base Address + 0x0004, Reset Value: 0x0004_0002

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						RSVD							MCLK_STAT	PLLCLK_STAT	LCLK_STAT				RSVD				IDLE_PWR			RSVD		LCLK_SEL	LCLK_EN		LDIV
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	00
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R	R	R	R	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:19]	R	Reserved (Not used)	0
MCLK_STAT	[18]	R	MCLK clock status bit 0 = MCLK is disabled (MCLK is disconnected) 1 = MCLK is enabled (MCLK is connected)	1
PLLCLK_STAT	[17]	R	PLL clock status bit 0 = PLL CLK is disabled (PLLCLK/4 is disconnected) 1 = PLLCLK is enabled (PLLCLK/4 is connected)	0
LCLK_STAT	[16]	R	LCLK clock status bit 0 = SCLK is connected 1 = ICLK is connected	0
RSVD	[15:9]	R	Reserved (Not used)	0
IDLE_PWR	[8]	RW	IDLE mode power down on/off bit 0 = IDLE mode power down OFF 1 = IDLE mode power down ON NOTE: If only some blocks are enabled except to PLL, IDLE_PWR set to high for low power consumption.	0
RSVD	[7:4]	R	Reserved (Not used)	0
LCLK_SEL	[3]	RW	SCLK or ICLK (Internal ring oscillator) selection bit 0 = ICLK (Internal ring clock) 1 = SCLK	0
LCLK_EN	[2]	RW	ICLK (Internal ring oscillator) enable bit 0 = ICLK is enabled 1 = ICLK is disabled	1
LDIV	[1:0]	RW	Divide-by selection bits for Timer 3 00 = LCLK/16 01 = LCLK/8 10 = LCLK/2	00

Name	Bit	Туре	Description	Reset Value
			11 = LCLK (Non-divided)	

7.10.1.3 PLLPMS

- Base Address: 0x4002_0000
- Address = Base Address + 0x0008, Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					RSVD								PDIV							VIUM							KSVD				SDIV
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
										W	W	W	W	W	W	W	W	W	W	W	W	W	W							w	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:22]	R	Reserved (Not used)	0
PDIV	[21:16]	RW	Pre divider control	0
MDIV	[15:8]	RW	Main divider control	0
RSVD	[7:2]	R	Reserved (Not used)	0
SDIV	[1:0]	RW	Post-divider control	0

7.10.1.3.1 PMS Value Table (LFPASS = 0)

FIN	FOUT	Р	Μ	S
2 MHz	48 MHz	1	64	0
4 MHz	48 MHz	2	40	0
6 MHz	48 MHz	4	40	0
8 MHz	48 MHz	6	40	0
12 MHz	48 MHz	10	40	0
16 MHz	48 MHz	14	40	0
20 MHz	48 MHz	18	40	0

7.10.1.4 PLLLCNT

- Base Address: 0x4002_0000
- Address = Base Address + 0x000C, Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																									Ł						
									RSVD																Х С						
									ĽĽ.																LOCK						
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																			W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:13]	R	Reserved (Not used)	0
LOCK_CNT	[12:0]	RW	PLL lock count value (Down counter)	0

NOTE:

1. Maximum PLL locking time = MAX 200 μ s

2. PLL output frequency is selected to be used for system clock. The system clock includes CPU clock and Peripheral clock, which are derived from corresponding Customer's Divide at the output of the PLL. The implementation of the PLL output frequency for the system clock don't have to be exactly the same with the nominal value suggested as the bellow, but can be selected closest value instead.

p, m and s are decimal values of P[5:0], M[7:0] and S[1:0] p = P[5:0], m = M[7:0], s = S[1:0] Output Frequency, F_{OUT} , is like this equation: $F_{OUT} = ((m + 8) \times F_{IN})/((p + 2) \times 2^{s}) (LFPASS = 0)$ $F_{OUT} = ((m + 8) \times F_{IN})/2^{s} (LFPASS = 1)$

The range of P[5:0], M[7:0] and S[2:0]: 6'b00 0001 \leq P[5:0] \leq 6'b11 1111 8'b0001 0000 \leq M[7:0] \leq 8'b1111 1111 2'b00 \leq S[1:0] \leq 2'b11

Don't set the value P[5:0] or M[7:0] to all zeros. (6'b00 0000/8'b0000 0000)

7.10.1.5 PLLLOCK

- Base Address: 0x4002_0000
- Address = Base Address + 0x0010, Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RSVD																PLL_LOCK
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:1]	R	Reserved (Not used)	0
PLL_LOCK	[0]	R	PLL Lock Status 0 = Progress 1 = Locking done	0

NOTE: If PLL is turned on, PLLLCNT starts down count, and then, the PLLLCNT value becomes zero and PLL_LOCK register is changed to "1".

7.10.1.6 SWRST

- Base Address: 0x4002_0000
- Address = Base Address + 0x0014, Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD																SWKSI			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	0
SWRST	[7:0]	RW	Chip Software reset. This bit is self-clearing, and is automatically cleared after several system clock cycles. 1010_0101 = Invoke a software reset of the chip. Other value = Do not invoke a software reset of the chip.	0

7.10.1.7 PWRCHG

• Base Address: 0x4002_0000

• Address = Base Address + 0x0018, Reset Value: 0x0000_0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														UNSA																VUSB_DET	PWRCHG
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:2]	R	Reserved (Not used)	0
VUSB_DET	[1]	R	VUSB power detection register 0 = VUSB power is detached 1 = VUSB power is attached	Decided by VUSB status
PWRCHG	[0]	RW	Power source change register 0 = VUSB power 1 = VDDVBAT power	1

NOTE: It will take Max. 50 μ s to change power source via PWRCHG bit.

		•			
		•			
		•			
		•			
		•			
		•			
		•			
		٠			
		٠			
		•			

8.1 Overview

Resetting the MCU is the function to start processing by generating reset signal using several reset schemes. During reset, most control and status are forced to initial values and the program counter is loaded with the Reset handler start address on reset.

8.1.1 Reset Sources

The S3FN60D has four-different system reset sources as following

- Chip reset by S/W (SWRST): When SWRST is set to 0xA5, chip reset occurs
- The External Reset Pin (nRESET): When the nRESET pin transiting from VIL (Low input level of reset pin) to VIH (High input level of reset pin), the reset pulse is generated on the condition of "VDD ≥ VLVD" in any operation mode
- Watch Dog Timer (WDT)
- When watchdog timer enables in normal operating, a reset is generated whenever watchdog timer overflow occurs
- When lock-up in the case of a fault arising while executing a HardFault or NMI. (NOTE)
- Low Voltage Detect (LVD): When VDD is changed in condition for LVD operation in the normal operating mode, reset occurs
- Internal Power-ON Reset (IPOR): When VDD is changed in condition for IPOR operation, a reset is generated
- **NOTE:** The standard exception entry mechanism does not apply where a fault or supervisor call occurs at a priority of -1 or above. Cortex-M0 uses lock-up in all its supported cases. Lock-up suspends normal instruction execution and enters lock-up state. When in lock-up state, WDT reset occurs. This will exit lock-up state and reset the system as normal.

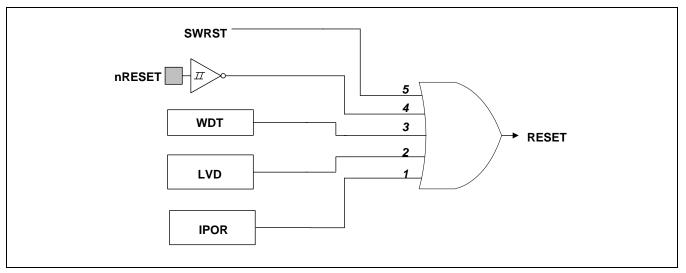


Figure 8-1 RESET Sources of The S3FN60D

These sources can check by using RESETID register. (Refer to page 8-13)

- 1. When POR circuit detects VDD below VPOR, reset is generated by internal power-on reset.
- 2. The rising edge detection of LVD circuit while rising of VDD passes the level of VLVD.
- 3. Watchdog timer over-flow. See the Chapter 10 Basic Timer/WDT for more understanding.
- 4. The reset pulse generation by transiting of reset pin (nRESET) from low level to high level on the condition that VDD is higher level state than VLVD (Low Level Detect Voltage).
- 5. Chip reset occurs when SWRST.0 is set to 1. See the Chapter 7 Clock Circuit for more understanding.

8.1.2 Reset Mechanism

The interlocking work of reset pin and LVD circuit supplies two operating modes: back-up mode input, and system reset input. Back-up mode input automatically makes a chip stop, when the voltage at V_{DD} is lower than V_{LVD} . The LVD circuit detects rising edge of V_{DD} on the point V_{LVD} , the reset pulse generator makes a reset pulse, and system reset occurs. When the operating mode is in STOP mode, the LVD circuit is disabled to reduce the current consumption under 0.3 μ A (typ. at V_{DD} = 3.6 V). Therefore, although the voltage at V_{DD} is lower than V_{LVD} , the chip doesn't go into back-up mode when the operating state is in stop mode.

8.1.3 External Reset Pin

When the nRESET pin transiting from V_{IL} (Low input level of reset pin) to V_{IH} (High input level of reset pin), the reset pulse is generated on the condition of " $V_{DD} \ge V_{LVD}$ " in any operation mode. Although nRESET pin is held to low, oscillator circuit is operated still for system stable time retention.

Refer to following table and figure for more information.

	Condi	tion		
Slope of V _{DD}	V _{DD}	The Voltage Level of Reset Pin (Vreset)	Reset Source	System Reset
	$VDD \geq VLVD$	Vreset \geq VIH	-	No system reset
Rising up from	VDD > VLVD	Vreset < VIH	-	No system reset
VPOR < VDD < VLVD	VDD < VLVD	Transition from "Vreset < VIL" to "VIH < Vreset"	_	No system reset
	$VDD \geq VLVD$	Vreset \geq VIH	Internal POR	System reset occurs
Rising up from	VDD > VLVD	Vreset < VIH	-	No system reset
VDD < VPOR	VDD < VLVD	Transition from "Vreset < VIL" to "VIH < Vreset"	_	No system reset
Standstill (VDD ≥ VLVD)	$VDD \geq VLVD$	Transition from "Vreset < VIL" to "VIH < Vreset"	Reset pin	System reset occurs

 Table 8-1
 Reset Condition in STOP Mode

8.1.4 Watch Dog Timer Reset

The watchdog timer that can recover to normal operation from abnormal function is built in S3FN60D. Watchdog timer generates a system reset signal, if watchdog timer (WDTCNT) isn't cleared within a specific time by program. For more understanding of the watchdog timer function, please see the Chapter 10 Basic Timer/Watchdog timer.

8.1.5 S/W Reset

System reset occurs when SWRST[7:0] is set to 0xA5.

8.1.6 LVD Reset

The Low Voltage Detect Circuit (LVD) is built on the S3FN60D product to generate a system reset. LVD is disabled in stop mode. When the voltage at V_{DD} is falling down and passing V_{LVD} , the chip goes into back-up mode at the moment " $V_{DD} = V_{LVD}$ ". As the voltage at V_{DD} is rising up, the reset pulse is occurred at the moment " $V_{DD} \ge V_{LVD}$ ".

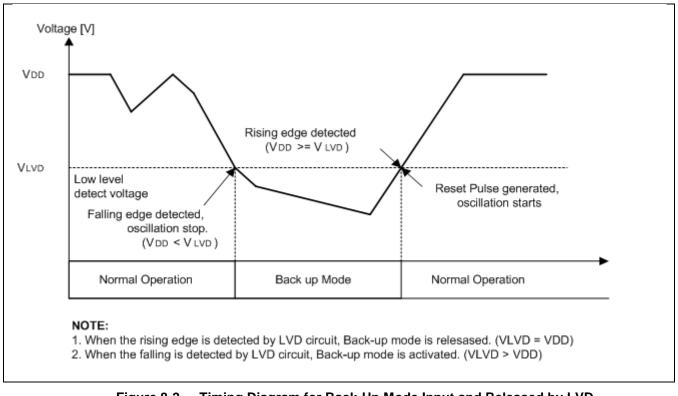


Figure 8-2 Timing Diagram for Back-Up Mode Input and Released by LVD

For reducing current consumption, S3FN60D goes into Back-up mode. Back-up mode voltage is VDD between LVD and POR. In back-up mode, chip cannot be released from back-up mode by any interrupt. The only way to release back-up mode is the system-reset operation by LVD circuit. The system reset of watchdog timer is not occurred in back up mode.

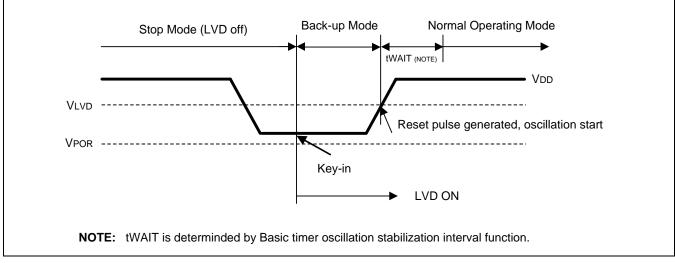
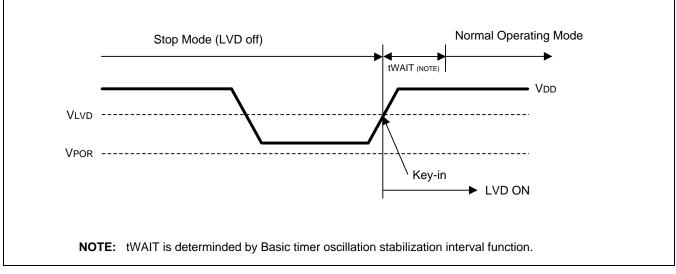
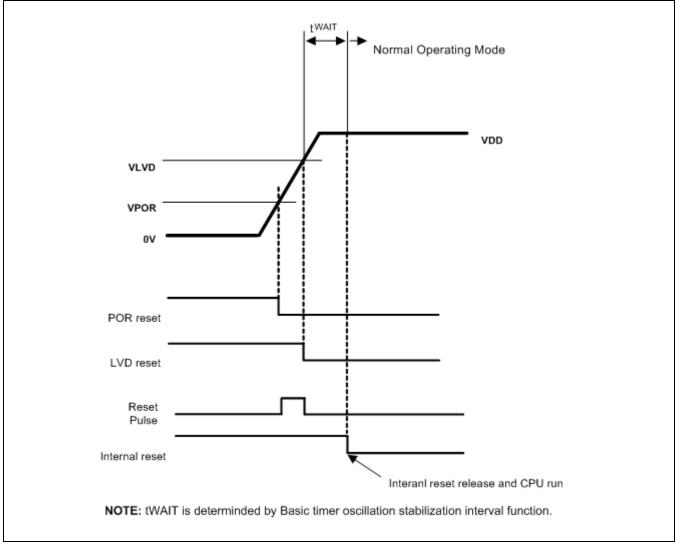


Figure 8-3 Timing Diagram in Stop Mode

<u>Figure 8-3</u> is timing diagram when external interrupt of key-in occurs below VLVD. In stop mode, chip turn off LVD block for minimizing current consumption. And although VDD is lower than VLVD, chip is still stop mode because LVD block is turned off. If VDD is above VPOR, chip maintains data retention including SFR. When key-in occurs below VLVD, LVD block is turned on and chip enters back-up mode. And then, If VDD go up VLVD, LVD reset is generated and oscillator start. After tWAIT (Oscillator stabilization interval timer of Basic timer), chip can resume normal operation.




Figure 8-4 Timing Diagram in Stop Mode

<u>Figure 8-4</u> is timing diagram when external interrupt of key-in occurs above VLVD. Because VDD is above VLVD, LVD reset does not occur. If VDD is above VPOR, chip maintains data retention including SFR. When external interrupt of key-in occurs, chip operate to normal mode after tWAIT (Oscillator stabilization interval timer of Basic timer)

8.1.7 POR Reset (Internal Power-On Reset)

The power-on reset circuit is built on the S3FN60D product. When power is initially applied to the MCU, or when VDD drops below the V_{POR} , the POR circuit holds the MCU in reset until VDD has risen above the V_{LVD} level.

Figure 8-5 Timing Diagram for Internal Power-On Reset Circuit

After power is initially applied to the MCU, when VDD rise above VPOR, S3FN60D is initialized. And then S3FN60D is back-up mode between VPOR and VLVD. If VDD rise above VLVD, LVD reset occurs and oscillation starts. When BTCNT.4 overflows (After tWAIT), CPU resumes normal operation.

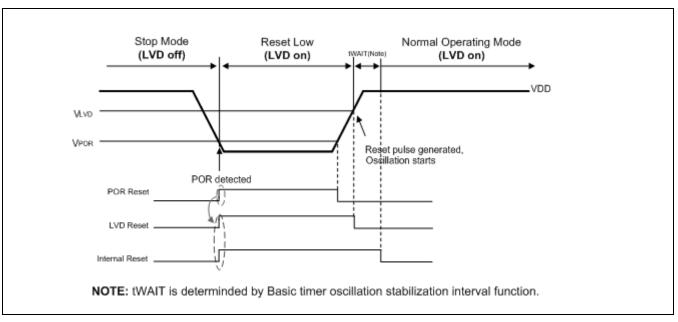


Figure 8-6 Reset Timing Diagram for the S3FN60D in STOP Mode by IPOR

For reduce current consumption, LVD is turn off in stop mode. Although VDD drops below VLVD, chip does not enter to back-up mode because LVD turn off still. When VDD drops below VPOR, POR circuit holds the MCU in reset until VDD has risen above VLVD. If VDD rise above VLVD, LVD reset occurs and oscillation starts. When BTCNT.4 overflows (After tWAIT), CPU resumes normal operation. Or If VDD is between VPOR and VLVD, chip is back-up mode.

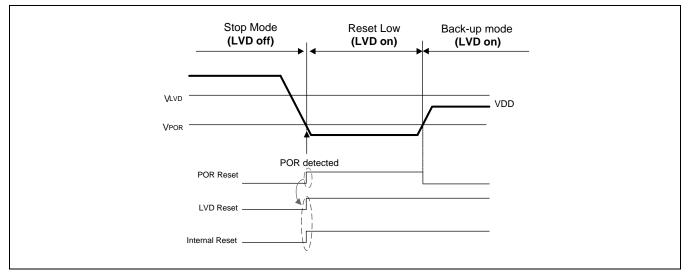


Figure 8-7 Wake Up in Stop Mode by IPOR (VPOR < VDD < VLVD)

VDD drops below VPOR, POR circuit holds the MCU in reset until VDD has risen above VLVD. If VDD is between VPOR and VLVD, chip is back-up mode.

8 Reset

8.1.8 System Reset Operation

System reset starts the oscillation circuit, synchronize chip operation with CPU clock, and initialize the internal CPU and peripheral modules. This procedure brings the S3FN60D into a known operating status. To allow time for internal CPU clock oscillation to stabilize, the reset pulse generator must be held to active level for a minimum time interval after the power supply comes within tolerance. The minimum required reset operation for a oscillation stabilization time is 16 oscillation clocks. All system and peripheral control registers are then reset to their default hardware values.

In summary, the following sequence of events occurs during a reset operation:

- All interrupts are disabled
- The basic timer and watch-dog timer are enabled
- General Ports are set to input mode and all pull-up resistors are disabled for the I/O port pin circuits (P4.3, 4, 5, 6, 7 are initially used for JTAG interface)
- Peripheral control and data register settings are disabled and reset to their default hardware values
- When the programmed oscillation stabilization time interval has elapsed, the instruction stored in reset address is fetched and executed
- **NOTE:** To program the duration of the oscillation stabilization interval, you make the appropriate settings to the basic timer control register, BTCON, before entering Stop mode.

8.1.9 Status Table of Back-Up Mode, Stop Mode, and Reset

For more understanding, please see the below description <u>*Table 8-2*</u>.

	Table 8-2	Summary of Each Mode	
Item/Mode	Back-Up Mode	Stop Mode	Reset Status
Approach Condition	VDD is lower than VLVD and upper than VPOR.	Stop mode (Deep sleep mode) entry using Wait For Interrupt (WFI), Wait for Event (WFE) instructions after SLEEPDEEP bit (System Control Register at 0xE000ED10) set to high, or the return from interrupt sleep- on-exit feature.	 External nRESET pin is on rising edge. The rising edge at VDD is detected by LVD circuit. (When VDD ≥ VLVD) Watch-dog timer overflow signal is activated. SWRST[7:0] is set to 0xA5
Port status	 All I/O port is floating status except to JTAG shared ports All the ports become input mode but is blocked except to JTAG shared ports Disable all pull-up resister except to JTAG shared ports NOTE: JTAG shared ports are P4.3 to P4.7. For the details, Refer to Chapter 9 I/O Ports. 	 All the ports keep the previous status. Output port data is not changed. 	 All I/O port is floating status except to JTAG shared ports Disable all pull-up resisters except to JTAG shared ports. NOTE: JTAG shared ports are P4.3 to P4.7. For the details, Refer to Chapter 9 I/O Ports.
Control Register	All control register and system register are initialized	_	All control register and system register are initialized
Releasing Condition	The rising edge of LVD circuit is generated.	 External interrupt (INT0-11) System reset (IPOR, nRESET) FRT interrupt (FRT MATCH) VUSB detect and USBINT 	After passing an oscillation warm-up time
Others	There is no current consumption in chip except to LVD block	It depends on control program	There can be input leakage current in chip.

Table 8-2	Summary of	Each Mode
-----------	------------	-----------

8.2 Register Description

8.2.1 Register Map Summary

Base Address: 0x4002_0000

Register	Offset	Description	Reset Value
RESETID	0x0020	Reset source indicating register	0x0000_0000

8.2.1.1 RESETID

- Base Address: 0x4002_0000
- Address = Base Address + 0x0020, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													UVSNU													SW_RESET	NRESET_BIT	RSVD	WDT_BIT	LVD_BIT	POR_BIT
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																										W	W		W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:6]	R	Reserved (Not used for S3FN60D)	0
SW_RESET	[5]	RW	S/W Reset Indicating Bit 0 = Reset is not generated by S/W (when read) 1 = Reset is generated by S/W (when read)	0
NRESET_BIT	[4]	RW	nReset pin Indicating Bit 0 = Reset is not generated by nReset pin (when read) 1 = Reset is generated by nReset pin (when read)	0
RSVD	[3]	R	Reserved (Not used for S3FN60D)	0
WDT_BIT	[2]	RW	WDT Reset Indicating Bit 0 = Reset is not generated by WDT (when read) 1 = Reset is generated by WDT (when read)	0
LVD_BIT	[1]	RW	LVD Reset Indicating Bit 0 = Reset is not generated by LVD (when read) 1 = Reset is generated by LVD (when read)	0
POR_BIT	[0]	RW	POR Reset Indicating Bit 0 = Reset is not generated by POR (when read) 1 = Reset is generated by POR (when read)	0

State of RESETID Depends on Reset Source

	[7:6]	5	4	3	2	1	0
POR	_	0	0	_	0	1	1
LVD	_	0	0	0	1	(2)	
WDT or nRST or S/W reset	_		(:	(2)	(2)		

NOTE:

1. To clear an indicating register, write a "1" to indicating flag bit. Writing a "0" to an reset indicating flag (RESETID.0-5) has no effect.

2. Not affected by any other reset.

3. Bits corresponding to sources that are active at the time of reset will be set.

If POR reset occurs, both POR and LVD bit are set because LVD level is above POR level. POR and LVD bit are not cleared by WDT or nRST or S/W reset.

9.1 Overview

S3FN60D has 50 multi-functional GPIO (General-purpose input/output) port pins organized into 7 port groups:

Each port can be easily configured by software to meet various system configuration and design requirements. These multi-functional pins need to be properly configured before their use. If a multiplexed pin is not used as a dedicated functional pin, this pin can be configured as GPIO ports.

The initial pin states, before pin configurations, are configured elegantly to avoid some problems.

9.2 Features

9.2.1 Port Control Description

9.2.1.1 Port Configuration Register (PCON0 to PCON6)

In S3FN60D, most pins are multiplexed, and the PCONn (Port Control register) determines which function is used for each pin.

For IR applications, port0, port1, port2 and port4 are used for external interrupt input pin and port 3.1 is used for IR drive pins.

For Debugging mode, P4.3, 4, 5, 6, 7 are initially used for JTAG interface. Also P4.3, 4, 5, 6, 7 can be assigned as an I/O port from setting P4CONH/L.

9.2.1.2 External Interrupt Control Register

The 32 external interrupts (Port0, port1, port2 and port4) support various trigger mode: the trigger mode can be configured as falling-edge trigger and rising-edge trigger.

Because each external interrupt pin has an integrated digital noise filter, the interrupt controller can recognize the request signal that lasts longer than 75ns.

9.2.1.3 Port Data Register (PDAT0 to PDAT6)

If Ports are configured as output ports, data can be written to the corresponding bit of Pn. If Ports are configured as input ports, the data can be read from the corresponding bit of Pn.

9.3 Register Description

9.3.1 Register Map Summary

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600

Register	Offset	Description	Reset Value				
P0CONH	0x0000	Port 0 control register high	0x0000_0000				
P0CONL	0x0004	Port 0 control register low	0x0000_0000				
P0EDGE	0x0008	Port 0 interrupt EDGE control register	0x0000_0000				
POINT	0x000C	Port 0 interrupt control register	0x0000_0000				
P0PND	0x0010	Port 0 interrupt pending register	0x0000_0000				
P0PUR	0x0014	Port 0 pull-up resister enable register	0x0000_0000				
RSVD	0x0018	Reserved	0x0000_0000				
PODATA	0x001C	Port 0 data register	0x0000_0000				
P1CONH	0x0100	Port 1 control register high	0x0000_0000				
P1CONL	0x0104	Port 1 control register low	0x0000_0000				
P1EDGE	0x0108	Port 1 interrupt EDGE control register	0x0000_0000				
P1INT	0x010C	Port 1 interrupt control register	0x0000_0000				
P1PND	0x0110	Port 1 interrupt pending register	0x0000_0000				
P1PUR	0x0114	Port 1 pull-up resister enable register	0x0000_0000				
RSVD	0x0118	Reserved	0x0000_0000				
P1DATA	0x011C	Port 1 data register	0x0000_0000				
P2CONH	0x0200	Port 2 control register high	0x0000_0000				
P2CONL	0x0204	Port 2 control register low	0x0000_0000				
P2EDGE	0x0208	Port 2 interrupt EDGE control register	0x0000_0000				
P2INT	0x020C	Port 2 interrupt control register	0x0000_0000				
P2PND	0x0210	Port 2 interrupt pending register	0x0000_0000				
P2PUR	0x0214	Port 2 pull-up resister enable register	0x0000_0000				
RSVD	0x0218	Reserved	0x0000_0000				
P2DATA	0x021C	Port 2 data register	0x0000_0000				
P3CONH	0x0300	Port 3 control register high	0x0000_0000				
P3CONL	0x0304	Port 3 control register low	0x0000_0000				
RSVD	SVD 0x0308 Reserved						

Register	Offset	Description	Reset Value
RSVD	0x030C	Reserved	0x0000_0000
RSVD	0x0310	Reserved	0x0000_0000
P3PUR	0x0314	Port 3 pull-up resister enable register	0x0000_0000
RSVD	0x0318	Reserved	0x0000_0000
P3DATA	0x031C	Port 3 data register	0x0000_0000
P4CONH	0x0400	Port 4 control register high	0x0000_00FF
P4CONL	0x0404	Port 4 control register low	0x0000_0000
P4EDGE	0x0408	Port 4 interrupt EDGE control register	0x0000_0000
P4INT	0x040C	Port 4 interrupt control register	0x0000_0000
P4PND	0x0410	Port 4 interrupt pending register	0x0000_0000
P4PUR	0x0414	Port 4 pull-up resister enable register	0x0000_0000
RSVD	0x0418	Reserved	0x0000_0000
P4DATA	0x041C	Port 4 data register	0x0000_0000
P5CONH	0x0500	Port 5 control register high	0x0000_0000
P5CONL	0x0504	Port 5 control register low	0x0000_0000
RSVD	0x0508	Reserved	0x0000_0000
RSVD	0x050C	Reserved	0x0000_0000
RSVD	0x0510	Reserved	0x0000_0000
P5PUR	0x0514	Port 5 pull-up resister enable register	0x0000_0000
P5MODE	0x0508	Port 5 MODE selection register	0x0000_0000
P5DATA	0x051C	Port 5 data register	0x0000_0000
RSVD	0x0600	Reserved	0x0000_0000
P6CONL	0x0604	Port 6 control register low	0x0000_0000
RSVD	0x0608	Reserved	0x0000_0000
RSVD	0x060C	Reserved	0x0000_0000
RSVD	0x0610	Reserved	0x0000_0000
P6PUR	0x0614	Port 6 pull-up resister enable register	0x0000_0000
RSVD	0x0618	Reserved	0x0000_0000
P6DATA	0x061C	Port 6 data register	0x0000_0000

9.3.1.1 P0CONH

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0000, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD													P07_SE1		P06_SE1		P05_SE1		P04_SE1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W		R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P07_SET	[7:6]	RW	Port 0.7 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P06_SET	[5:4]	RW	Port 0.6 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P05_SET	[3:2]	RW	Port 0.5 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P04_SET	[1:0]	RW	Port 0.4 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00

9.3.1.2 P0CONL

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0004, Reset Value = 0x0000_0000

3	3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													h													SET		SEL	ł	NE -		SE -
												i	KSVD													P03_S		P02_S		P01_8		P00-S
																										L		T		1		1
									0							•				•												
0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																									0	0	0	0	0	0	0	0
R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R								

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P03_SET	[7:6]	RW	Port 0.3 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P02_SET	[5:4]	RW	Port 0.2 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P01_SET	[3:2]	RW	Port 0.1 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P00_SET	[1:0]	RW	Port 0.0 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00

9.3.1.3 P0EDGE

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0008, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P07_EDGE	P06_ EDGE	P05_EDGE	P04_EDGE	P03_EDGE	P02_EDGE	P01_EDGE	P00_EDGE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P07_EDGE	[7]	RW	Port 0.7 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P06_EDGE	[6]	RW	Port 0.6 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P05_EDGE	[5]	RW	Port 0.5 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P04_EDGE	[4]	RW	Port 0.4 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P03_EDGE	[3]	RW	Port 0.3 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P02_EDGE	[2]	RW	Port 0.2 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P01_EDGE	[1]	RW	Port 0.1 interrupt state setting bit.	0

SAMSUNG ELECTRONICS

Name	Bit	Туре	Description	Reset Value
			0 = Falling edge interrupt 1 = Rising edge interrupt	
P00_EDGE	[0]	RW	Port 0.0 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0

SAMSUNG

9.3.1.4 P0INT

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x000C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P07_ INT	$P06_{-}$ INT	P05_ INT	P04_ INT	$P03_{-}$ INT	P02_ INT	P01_ INT	P00_INT
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P07_INT	[7]	RW	Port 0.7 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P06_INT	[6]	RW	Port 0.6 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P05_INT	[5]	RW	Port 0.5 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P04_INT	[4]	RW	Port 0.4 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P03_INT	[3]	RW	Port 0.3 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P02_INT	[2]	RW	Port 0.2 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P01_INT	[1]	RW	Port 0.1 interrupt enable bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Disable interrupt 1 = Enable interrupt	
P00_INT	[0]	RW	Port 0.0 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0

9.3.1.5 P0PND

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0010, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P07_ PND	P06_ PND	P05_ PND	P04_ PND	P03_ PND	P02_ PND	P01_ PND	P00_ PND
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P07_PND	[7]	RW	Port 0.7 interrupt pending bit. 0 = Not pending 1 = Pending	0
P06_PND	[6]	RW	Port 0.6 interrupt pending bit. 0 = Not pending 1 = Pending	0
P05_PND	[5]	RW	Port 0.5 interrupt pending bit. 0 = Not pending 1 = Pending	0
P04_PND	[4]	RW	Port 0.4 interrupt pending bit. 0 = Not pending 1 = Pending	0
P03_PND	[3]	RW	Port 0.3 interrupt pending bit. 0 = Not pending 1 = Pending	0
P02_PND	[2]	RW	Port 0.2 interrupt pending bit. 0 = Not pending 1 = Pending	0
P01_PND	[1]	RW	Port 0.1 interrupt pending bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Not pending 1 = Pending	
P00_PND	[0]	RW	Port 0.0 interrupt pending bit. 0 = Not pending 1 = Pending	0

NOTE: When writing "0", pending bit is cleared.

9.3.1.6 P0PUR

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0014, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P07_PUR	706 PUR	704 BUR	P04_ PUR	P03_ PUR	P02_ PUR	P01_PUR	PO0_ PUR
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P07_PUR	[7]	RW	Port 0.7 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P06_PUR	[6]	RW	Port 0.6 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P05_PUR	[5]	RW	Port 0.5 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P04_PUR	[4]	RW	Port 0.4 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P03_PUR	[3]	RW	Port 0.3 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P02_PUR	[2]	RW	Port 0.2 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P01_PUR	[1]	RW	Port 0.1 pull-up resister enable bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Disable pull-up resistor 1 = Enable pull-up resister	
P00_PUR	[0]	RW	Port 0.0 pull-up resisters enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0

9.3.1.7 P0DATA

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x001C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												_																∢			
												KSVD															1	PUDALA			
											-	-															1	Ĺ			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
PODATA	[7:0]	RW	P0 data register	0

9.3.1.8 P1CONH

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0100, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD													P17_SE1		P16_SE1		P15_SE1		P14_SE1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P17_SET	[7:6]	RW	Port 1.7 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (AIN7)	00
P16_SET	[5:4]	RW	Port 1.6 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (AIN6)	00
P15_SET	[3:2]	RW	Port 1.5 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (AIN5)	00
P14_SET	[1:0]	RW	Port 1.4 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (AIN4)	00

9.3.1.9 P1CONL

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0104, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD													P13_SEI	9	P12_SEI		P11_SE		P10_0E1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P13_SET	[7:6]	RW	Port 1.3 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (AIN3)	00
P12_SET	[5:4]	RW	Port 1.2 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (AIN2)	00
P11_SET	[3:2]	RW	Port 1.1 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (AIN1)	00
P10_SET	[1:0]	RW	Port 1.0 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (AIN0)	00

SAMSUNG

9.3.1.10 P1EDGE

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0108, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P17_EDGE	P16_ EDGE	P15_EDGE	P14_EDGE	P13_EDGE	P12_EDGE	P11_EDGE	P10_EDGE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P17_EDGE	[7]	RW	Port 1.7 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P16_EDGE	[6]	RW	Port 1.6 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P15_EDGE	[5]	RW	Port 1.5 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P14_EDGE	[4]	RW	Port 1.4 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P13_EDGE	[3]	RW	Port 1.3 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P12_EDGE	[2]	RW	Port 1.2 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P11_EDGE	[1]	RW	Port 1.1 interrupt state setting bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Falling edge interrupt 1 = Rising edge interrupt	
P10_EDGE	[0]	RW	Port 1.0 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0

9.3.1.11 P1INT

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x010C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P17_ INT	$P16_{-}$ INT	$P15_{-}INT$	P14_ INT	$P13_{-}$ INT	P12_ INT	$P11_{-}INT$	P10_INT
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P17_INT	[7]	RW	Port 1.7 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P16_INT	[6]	RW	Port 1.6 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P15_INT	[5]	RW	Port 1.5 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P14_INT	[4]	RW	Port 1.4 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P13_INT	[3]	RW	Port 1.3 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P12_INT	[2]	RW	Port 1.2 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P11_INT	[1]	RW	Port 1.1 interrupt enable bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Disable interrupt 1 = Enable interrupt	
P10_INT	[0]	RW	Port 1.0 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0

9.3.1.12 P1PND

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0110, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P17_ PND	P16_ PND	P15_ PND	P14_ PND	P13_ PND	P12_ PND	P11_PND	P10_ PND
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P17_PND	[7]	RW	Port 1.7 interrupt pending bit. 0 = Not pending 1 = Pending	0
P16_PND	[6]	RW	Port 1.6 interrupt pending bit. 0 = Not pending 1 = Pending	0
P15_PND	[5]	RW	Port 1.5 interrupt pending bit. 0 = Not pending 1 = Pending	0
P14_PND	[4]	RW	Port 1.4 interrupt pending bit. 0 = Not pending 1 = Pending	0
P13_PND	[3]	RW	Port 1.3 interrupt pending bit. 0 = Not pending 1 = Pending	0
P12_PND	[2]	RW	Port 1.2 interrupt pending bit. 0 = Not pending 1 = Pending	0
P11_PND	[1]	RW	Port 1.1 interrupt pending bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Not pending 1 = Pending	
P10_PND	[0]	RW	Port 1.0 interrupt pending bit. 0 = Not pending 1 = Pending	0

NOTE: When writing "0", pending bit is cleared.

9.3.1.13 P1PUR

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0114, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P17_ PUR	P16_ PUR	P15_ PUR	P14_ PUR	P13_ PUR	P12_ PUR	P11_PUR	P10_PUR
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P17_PUR	[7]	RW	Port 1.7 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P16_PUR	[6]	RW	Port 1.6 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P15_PUR	[5]	RW	Port 1.5 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P14_PUR	[4]	RW	Port 1.4 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P13_PUR	[3]	RW	Port 1.3 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P12_PUR	[2]	RW	Port 1.2 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P11_PUR	[1]	RW	Port 1.1 pull-up resister enable bit.	0

SAMSUNG ELECTRONICS

9 I/O Ports

Name	Bit	Туре	Description	Reset Value
			0 = Disable pull-up resistor 1 = Enable pull-up resister	
P10_PUR	[0]	RW	Port 1.0 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0

9.3.1.14 P1DATA

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x011C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												_																∢			
											ļ	RSVD																PIDALA			
												L.															i	ŗ			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P1DATA	[7:0]	RW	P1 data register	0

SAMSUNG

9.3.1.15 P2CONH

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0200, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-											RSVD													P27_SET		P26_SEI		P25_SEI		P24_SE1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P27_SET	[7:6]	RW	Port 2.7 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P26_SET	[5:4]	RW	Port 2.6 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P25_SET	[3:2]	RW	Port 2.5 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P24_SET	[1:0]	RW	Port 2.4 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00

9.3.1.16 P2CONL

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0204, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD													P23_SET		P22_SE1		P21_SEI		P20_SEI
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P23_SET	[7:6]	RW	Port 2.3 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P22_SET	[5:4]	RW	Port 2.2 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P21_SET	[3:2]	RW	Port 2.1 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P20_SET	[1:0]	RW	Port 2.0 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00

9.3.1.17 P2EDGE

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0208, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P27_EDGE	P26_EDGE	P25_EDGE	P24_EDGE	P23_EDGE	P22_EDGE	P21_EDGE	P20_EDGE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P27_EDGE	[7]	RW	Port 2.7 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P26_EDGE	[6]	RW	Port 2.6 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P25_EDGE	[5]	RW	Port 2.5 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P24_EDGE	[4]	RW	Port 2.4 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P23_EDGE	[3]	RW	Port 2.3 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P22_EDGE	[2]	RW	Port 2.2 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P21_EDGE	[1]	RW	Port 2.1 interrupt state setting bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Falling edge interrupt 1 = Rising edge interrupt	
P20_EDGE	[0]	RW	Port 2.0 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0

9.3.1.18 P2INT

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x020C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P27_INT	P26_INT	P25_INT	P24_INT	P23_INT	P22_INT	P21_INT	P20_INT
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P27_INT	[7]	RW	Port 2.7 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P26_INT	[6]	RW	Port 2.6 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P25_INT	[5]	RW	Port 2.5 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P24_INT	[4]	RW	Port 2.4 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P23_INT	[3]	RW	Port 2.3 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P22_INT	[2]	RW	Port 2.2 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P21_INT	[1]	RW	Port 2.1 interrupt enable bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Disable interrupt 1 = Enable interrupt	
P20_INT	[0]	RW	Port 2.0 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0

9.3.1.19 P2PND

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0210, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P27_PND	P26_PND	P25_PND	P24_PND	P23_PND	P22_PND	P21_PND	P20_PND
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P27_PND	[7]	RW	Port 2.7 interrupt pending bit. 0 = Not pending 1 = Pending	0
P26_PND	[6]	RW	Port 2.6 interrupt pending bit. 0 = Not pending 1 = Pending	0
P25_PND	[5]	RW	Port 2.5 interrupt pending bit. 0 = Not pending 1 = Pending	0
P24_PND	[4]	RW	Port 2.4 interrupt pending bit. 0 = Not pending 1 = Pending	0
P23_PND	[3]	RW	Port 2.3 interrupt pending bit. 0 = Not pending 1 = Pending	0
P22_PND	[2]	RW	Port 2.2 interrupt pending bit. 0 = Not pending 1 = Pending	0
P21_PND	[1]	RW	Port 2.1 interrupt pending bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Not pending 1 = Pending	
P20_PND	[0]	RW	Port 2.0 interrupt pending bit. 0 = Not pending 1 = Pending	0

NOTE: When writing "0", pending bit is cleared.

9.3.1.20 P2PUR

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0214, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P27_PUR	P26_PUR	P25_PUR	P24_PUR	P23_PUR	P22_PUR	P21_PUR	P20_PUR
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P27_PUR	[7]	RW	Port 2.7 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P26_PUR	[6]	RW	Port 2.6 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P25_PUR	[5]	RW	Port 2.5 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P24_PUR	[4]	RW	Port 2.4 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P23_PUR	[3]	RW	Port 2.3 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P22_PUR	[2]	RW	Port 2.2 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P21_PUR	[1]	RW	Port 2.1 pull-up resister enable bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Disable pull-up resistor 1 = Enable pull-up resister	
P20_PUR	[0]	RW	Port 2.0 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0

9.3.1.21 P2DATA

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x021C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												_																∢			
												KSVD															1	PZUA I A			
											-	-															1	ר			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P2DATA	[7:0]	RW	P2 data register	0

9.3.1.22 P3CONH

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0300, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												RSVD													KSVD		P36_SE1		P35_SE1		P34_SE1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
RSVD	[7:6]	R	Reserved (Not used for S3FN60D)	00
P36_SET	[5:4]	RW	Port 3.6 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (T1PWM)	00
P35_SET	[3:2]	RW	Port 3.5 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (T1CAP)	00
P34_SET	[1:0]	RW	Port 3.4 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (T1CLK)	00

9.3.1.23 P3CONL

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0304, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD													P33_SEI		P32_SE1		P31_SEI		P30_SEI
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P33_SET	[7:6]	RW	Port 3.3 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (TAPWM)	00
P32_SET	[5:4]	RW	Port 3.2configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (TACAP)	00
P31_SET	[3:2]	RW	Port 3.1 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (REM)	00
P30_SET	[1:0]	RW	Port 3.0 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (TACLK)	00

9.3.1.24 P3PUR

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0314, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												RSVD													P36_PUR	P35_PUR	P34_PUR	P33_PUR	P32_PUR	P31_PUR	P30_PUR
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W						

Name	Bit	Туре	Description	Reset Value
RSVD	[31:7]	R	Reserved	0
P36_PUR	[6]	RW	Port 3.6 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P35_PUR	[5]	RW	Port 3.5 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P34_PUR	[4]	RW	Port 3.4 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P33_PUR	[3]	RW	Port 3.3 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P32_PUR	[2]	RW	Port 3.2 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P31_PUR	[1]	RW	Port 3.1 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P30_PUR	[0]	RW	Port 3.0 pull-up resister enable bit.	0

9 I/O Ports

Name	Bit	Туре	Description	Reset Value
			0 = Disable pull-up resistor 1 = Enable pull-up resister	

9.3.1.25 P3DATA

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x031C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												_																∢			
												KSVD																P3UA1			
											,	L															ì	ĩ			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P3DATA	[7:0]	RW	P3 data register	0

9.3.1.26 P4CONH

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0400, Reset Value = 0x0000_00FF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD													P47_SET		P46_SE1		P45_SE1		P44_SE1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 1	1	1 1	1 1	1 1	1	1 1	1 1
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P47_SET	[7:6]	RW	Port 4.7 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = JTAG interface (JTDO)	11
P46_SET	[5:4]	RW	Port 4.6 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = JTAG interface (JTMS)	11
P45_SET	[3:2]	RW	Port 4.5 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = JTAG interface (JTDI)	11
P44_SET	[1:0]	RW	Port 4.4 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode	11

Name	Bit	Туре	Description	Reset Value
			11 = JTAG interface (JTCK)	

JTAG interface port pin have below initial state

- NTRST: Input floating
- JTCK: Input floating
- JTDI: Input floating
- JTMS: Input floating
- JTDO: Output high

The software can then use these I/Os as standard GPIOs.

9.3.1.27 P4CONL

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0404, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												RSVD													P43_SET		P42_SEI		P41_SEI		P40_SE1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P43_SET	[7:6]	RW	Port 4.3 configuration bit. 00 = Input mode and JTAG interface (nTRST) 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P42_SET	[5:4]	RW	Port 4.2 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (T2PWM)	00
P41_SET	[3:2]	RW	Port 4.1 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (T2CAP)	00
P40_SET	[1:0]	RW	Port 4.0 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (T2CLK)	00

9.3.1.28 P4EDGE

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0408, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P47_EDGE	P46_EDGE	P45_EDGE	P44_EDGE	P43_EDGE	P42_EDGE	P41_EDGE	P40_EDGE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P47_EDGE	[7]	RW	Port 4.7 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P46_EDGE	[6]	RW	Port 4.6 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P45_EDGE	[5]	RW	Port 4.5 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P44_EDGE	[4]	RW	Port 4.4 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P43_EDGE	[3]	RW	Port 4.3 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P42_EDGE	[2]	RW	Port 4.2 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0
P41_EDGE	[1]	RW	Port 4.1 interrupt state setting bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Falling edge interrupt 1 = Rising edge interrupt	
P40_EDGE	[0]	RW	Port 4.0 interrupt state setting bit. 0 = Falling edge interrupt 1 = Rising edge interrupt	0

9.3.1.29 P4INT

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x040C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P47_INT	P46_INT	P45_INT	P44_INT	P43_INT	P42_INT	P41_INT	P40_INT
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P47_INT	[7]	RW	Port 4.7 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P46_INT	[6]	RW	Port 4.6 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P45_INT	[5]	RW	Port 4.5 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P44_INT	[4]	RW	Port 4.4 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P43_INT	[3]	RW	Port 4.3 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P42_INT	[2]	RW	Port 4.2 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0
P41_INT	[1]	RW	Port 4.1 interrupt enable bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Disable interrupt 1 = Enable interrupt	
P40_INT	[0]	RW	Port 4.0 interrupt enable bit. 0 = Disable interrupt 1 = Enable interrupt	0

9.3.1.30 P4PND

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0410, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P47_PND	P46_PND	P45_PND	P44_PND	P43_PND	P42_PND	P41_PND	P40_PND
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P47_PND	[7]	RW	Port 4.7 interrupt pending bit. 0 = Not pending 1 = Pending	0
P46_PND	[6]	RW	Port 4.6 interrupt pending bit. 0 = Not pending 1 = Pending	0
P45_PND	[5]	RW	Port 4.5 interrupt pending bit. 0 = Not pending 1 = Pending	0
P44_PND	[4]	RW	Port 4.4 interrupt pending bit. 0 = Not pending 1 = Pending	0
P43_PND	[3]	RW	Port 4.3 interrupt pending bit. 0 = Not pending 1 = Pending	0
P42_PND	[2]	RW	Port 4.2 interrupt pending bit. 0 = Not pending 1 = Pending	0
P41_PND	[1]	RW	Port 4.1 interrupt pending bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Not pending 1 = Pending	
P40_PND	[0]	RW	Port 4.0 interrupt pending bit. 0 = Not pending 1 = Pending	0

NOTE: When writing "0", pending bit is cleared.

9.3.1.31 P4PUR

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0414, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P47_PUR	P46_PUR	P45_PUR	P44_PUR	P43_PUR	P42_PUR	P41_PUR	P40_PUR
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P47_PUR	[7]	RW	Port 4.7 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P46_PUR	[6]	RW	Port 4.6 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P45_PUR	[5]	RW	Port 4.5 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P44_PUR	[4]	RW	Port 4.4 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P43_PUR	[3]	RW	Port 4.3 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P42_PUR	[2]	RW	Port 4.2 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P41_PUR	[1]	RW	Port 4.1 pull-up resister enable bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Disable pull-up resistor 1 = Enable pull-up resister	
P40_PUR	[0]	RW	Port 4.0 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0

9.3.1.32 P4DATA

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x041C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																												∡			
											ļ	KSVD															ł	P4UAL			
											,	T															í	ĭ			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P4DATA	[7:0]	RW	P4 data register	0

9.3.1.33 P5CONH

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0500, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												RSVD													P57_SET		P56_SE1		P55_SE1		P54_SE1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P57_SET	[7:6]	RW	Port 5.7 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (SPICLK1)	00
P56_SET	[5:4]	RW	Port 5.6 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (MISO1)	00
P55_SET	[3:2]	RW	Port 5.5 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (MOSI1 or SDA0, refer to P5MODE)	00
P54_SET	[1:0]	RW	Port 5.4 configuration bit. 00 = Input mode 01 = Output mode	00

Name	Bit	Туре	Description	Reset Value
			10 = N-channel open-drain mode 11 = Alternative function (SSEL1 or SCL0, refer to P5MODE)	

9.3.1.34 P5CONL

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0504, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD													P53_SET		P52_SE1		P51_SE1		P50_SET
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P53_SET	[7:6]	RW	Port 5.3 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (SPICLK0)	00
P52_SET	[5:4]	RW	Port 5.2 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (MISO0)	00
P51_SET	[3:2]	RW	Port 5.1 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (MOSI0 or SDA1, refer to P5MODE)	00
P50_SET	[1:0]	RW	Port 5.0 configuration bit. 00 = Input mode 01 = Output mode	00

Name	Bit	Туре	Description	Reset Value
			10 = N-channel open-drain mode 11 = Alternative function (SSEL0 or SCL1, refer to P5MODE)	

9.3.1.35 P5PUR

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0514, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												P57_PUR	P56_PUR	P55_PUR	P54_PUR	P53_PUR	P52_PUR	P51_PUR	P50_PUR
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P57_PUR	[7]	RW	Port 5.7 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P56_PUR	[6]	RW	Port 5.6 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P55_PUR	[5]	RW	Port 5.5 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P54_PUR	[4]	RW	Port 5.4 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P53_PUR	[3]	RW	Port 5.3 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P52_PUR	[2]	RW	Port 5.2 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P51_PUR	[1]	RW	Port 5.1 pull-up resister enable bit.	0

Name	Bit	Туре	Description	Reset Value
			0 = Disable pull-up resistor 1 = Enable pull-up resister	
P50_PUR	[0]	RW	Port 5.0 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0

9.3.1.36 P5MODE

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0518, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													KSVD													P55_MODE	P54_MODE		KSVD	P51_MODE	P50_MODE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R	R	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:6]	R	Reserved (Not used for S3FN60D)	0
P55_MODE	[5]	RW	Port 5.5 Alternative function selection bit 0 = MOSI1 1 = SDA0	0
P54_MODE	[4]	RW	Port 5.4 Alternative function selection bit 0 = SSEL1 1 = SCL0	0
RSVD	[3:2]	R	Reserved (Not used for S3FN60D)	00
P51_MODE	[1]	RW	Port 5.1 Alternative function selection bit. 0 = MOSI0 1 = SDA1	0
P50_MODE	[0]	RW	Port 5.0 Alternative function selection bit 0 = SSEL0 1 = SCL1	0

9.3.1.37 P5DATA

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x051C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																												∡			
												KSVD															ł	PSUALA			
											ſ	r															Ĺ	ĩ			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	w

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used for S3FN60D)	0
P5DATA	[7:0]	RW	P5 data register	0

9.3.1.38 P6CONL

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0604, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													KSVD														P62_SE1		P61_SET		P60_SEI
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:6]	R	Reserved (Not used for S3FN60D)	0
P62_SET	[5:4]	RW	Port 6.2 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Not used for S3FN60D	00
P61_SET	[3:2]	RW	Port 6.1 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (UARTTX)	00
P60_SET	[1:0]	RW	Port 6.0 configuration bit. 00 = Input mode 01 = Output mode 10 = N-channel open-drain mode 11 = Alternative function (UARTRX)	00

SAMSUNG

9.3.1.39 P6PUR

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x0614, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														RSVD															P62_PUR	P61_PUR	P60_PUR
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:3]	R	Reserved (Not used for S3FN60D)	0
P62_PUR	[2]	RW	Port 6.2 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P61_PUR	[1]	RW	Port 6.1 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0
P60_PUR	[0]	RW	Port 6.0 pull-up resister enable bit. 0 = Disable pull-up resistor 1 = Enable pull-up resister	0

9.3.1.40 P6DATA

- Port 0 SFR Base Address: 0x4007_0000
- Port 1 SFR Base Address: 0x4007_0100
- Port 2 SFR Base Address: 0x4007_0200
- Port 3 SFR Base Address: 0x4007_0300
- Port 4 SFR Base Address: 0x4007_0400
- Port 5 SFR Base Address: 0x4007_0500
- Port 6 SFR Base Address: 0x4007_0600
- Address = Base Address + 0x061C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														RSVD																P6DATA	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:3]	R	Reserved (Not used for S3FN60D)	0
P6DATA	[2:0]	RW	P6 data register	0

	•	
	•	
	•	
	•	
	•	
	•	

10 Basic Timer/Watchdog Timer

10.1 Overview

BTCON controls basic timer clock selection and watchdog timer clear bit.

Basic timer is used in two different ways:

- As a clock source to watchdog timer to provide an automatic reset mechanism in the event of a system malfunction (When watchdog function is enabled in smart option). Watchdog timer clock source is BTOVF
- To signal the end of the required oscillation stabilization interval after a reset or stop mode release

The reset value of basic timer clock selection bits is decided by smart option. (Refer to Chapter 2 Smart option) After reset, programmer can select the basic timer input clock using BTCON.

10.2 Features

10.2.1 Basic Timer Control Register (BTCON)

The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer counter, watchdog timer and frequency dividers, and to enable or disable the watch-dog timer function.

To disable the watch-dog function, you must write the signature code "101B" to the basic timer register control bits BTCON[7:5]. For improved reliability, using the watch-dog timer function is recommended in remote controllers and hand-held product applications.

10.2.2 Basic Timer Function Description

10.2.2.1 Watch-dog Timer Function

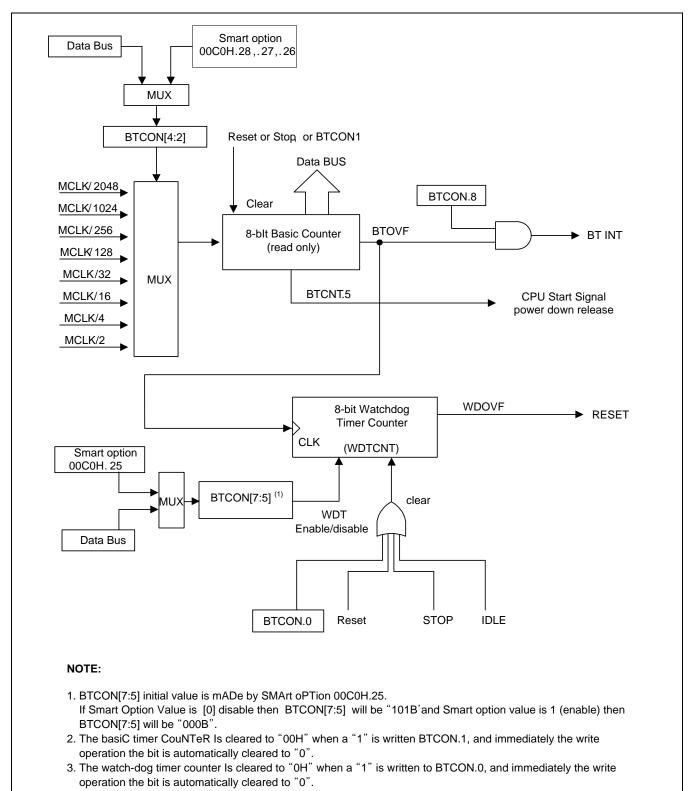
You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON[7:5] to any value other than "101B". (The "101B" value disables the watch-dog function.) A reset clears BTCON to "0000H", automatically enabling the watch-dog timer function.

A reset is generated whenever 8-bit watchdog timer overflow occurs. During normal operation, the application program must prevent the overflow, and the accompanying reset operation, from occurring. To do this, the WDTCNT value must be cleared (by writing a "1" to BTCON.0) at regular intervals.

If a system malfunction occurs due to circuit noise or some other error condition, the 8-bit watchdog counter clear operation will not be executed and a 6-bit watchdog timer overflow will occur, initiating a reset. If a malfunction does occur, a reset is triggered automatically.

10.2.2.2 Oscillation Stabilization Interval Timer Function

You can also use the basic timer to program a specific oscillation stabilization interval following a reset or when Stop mode has been released by an external interrupt.


In Stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. When BTCNT[5] overflows, a signal is generated to indicate that the stabilization interval has elapsed and to gate the clock signal off to the CPU so that it can resume normal operation.

In summary, the following events occur when Stop mode is released:

- 1. During Stop mode, a power-on reset or an external interrupt occurs to trigger the Stop mode release and oscillation starts.
- 2. If a power-on reset occurred, the basic timer counter will increase at the rate of basic timer clock selection bits is decided by smart option. If an external interrupt is used to release Stop mode, the BTCNT value increases at the rate of the preset clock source.
- 3. Clock oscillation stabilization interval begins and continues until bit 5 of the basic timer counter overflows.
- 4. When a BTCNT[5] overflow occurs, normal CPU operation resumes.

10.2.3 Basic Timer/Watchdog Timer Block Diagram

Figure 10-1 Basic Timer & Watchdog Timer Block Diagram

SAMSUNG ELECTRONICS

10.3 Register Description

10.3.1 Register Map Summary

• Base Address: 0x4005_0000

Register	Offset	Description	Reset Value
BTCON	0x0000	Basic timer control register	0x0000_0000
BTCNT	0x0004	Basic timer counter register	0x0000_0000
WDTCNT	0x0008	Watchdog timer counter register	0x0000_0000

10.3.1.1 BTCON

- Base Address: 0x4005_0000
- Address = Base Address + 0x0000, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											RSVD												BT_INT_EN		WDT_EN			BTCLK_SEL		BT_CLR	WDT_CLR
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:9]	R	Reserved (Not used)	0
BT_INT_EN	[8]	RW	Basic timer interrupt enable bit 0 = Disable interrupt 1 = Enable interrupt	0
			Watchdog timer function enable bit (for system reset)	
			Any other value Enable watchdog timer function	
WDT_EN	[7:5]	RW	BTCON[7:5] initial value is made by Smart option 00C0H.25. If Smart option value is 0 (Disable) then BTCON[7:5] will be "101B" and Smart option value is 1 (Enable) then BTCON[7:5] will be "000B". After reset, WDT is controlled by smart option 00C0H.25 and then WDT is controlled by BTCON[7:5]	Decided by Smart option
BTCLK_SEL	[4:2]	RW	Basic timer clock selection bit 000 = MCLK/2 001 = MCLK/4 010 = MCLK/16 011 = MCLK/32 100 = MCLK/128 101 = MCLK/256 110 = MCLK/1024 111 = MCLK/2048 After CPU operation resumes(BTCNT[5] set), basic timer clock can be changed by S/W.	Decided by Smart option
BT_CLR	[1]	RW	Basic timer clear bit 0 = Don't care 1 = Clear basic timer counter	0

Name	Bit	Туре	Description	Reset Value
WDT_CLR	[0]	RW	Watchdog timer counter clear bit 0 = Don't care 1 = Clear watchdog timer counter	0

10.3.1.2 BTCNT

- Base Address: 0x4005_0000
- Address = Base Address + 0x0004, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												_															,	_			
												KSVD															0	BICN			
											-																	ш			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	0
BTCNT	[7:0]	R	Basic timer counter value	0

10.3.1.3 WDTCNT

- Base Address: 0x4005_0000
- Address = Base Address + 0x0008, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												~															ļ	-			
												L N N N N																wpick			
																												\$			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	0
WDTCNT	[7:0]	R	Watchdog timer counter value	0

11 Counter A

11.1 Overview

This chapter describes Counter A module. The Counter A operates as a 16-bit counter which can be used to generate the carrier frequency. The carrier frequency from Counter A is supplied to Timer/Counter A's clock source (Refer to Chapter 12 TC_CSSR register).

11.1.1 Feature

- As a interval timer, generating a Counter A interrupt at programmed time intervals.
- 16-bit down counter with repeating mode and one shot mode.
- To supply a clock source to Timer/Counter A (Hereinafter, TA) module, 16-bit down counter.

NOTE: The CPU clock should be faster than Count A clock.

11.1.2 Pin Description

Table 11-1	Pin Description
	= • • • •

Pin Name	Function	I/O Type	Comments
REM	Carrier frequency output pin	0	-

SAMSUNG

11.2 Functional Description

11.2.1 Block Diagram

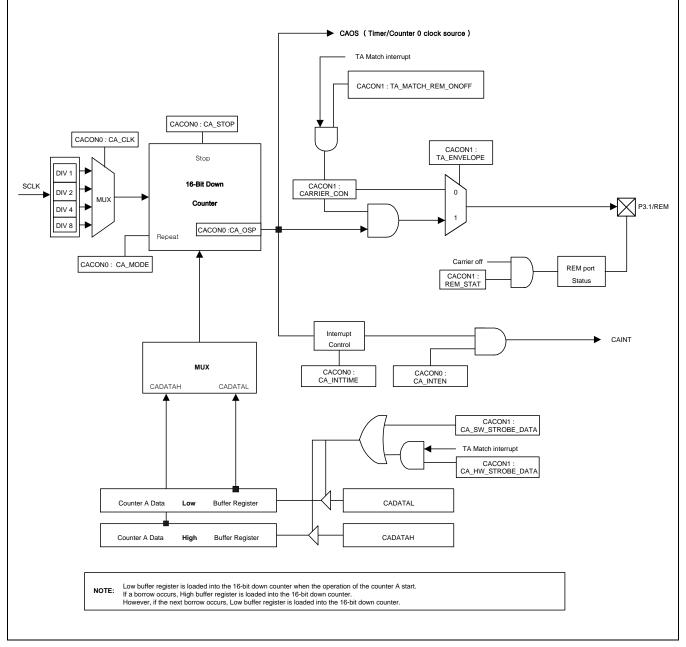
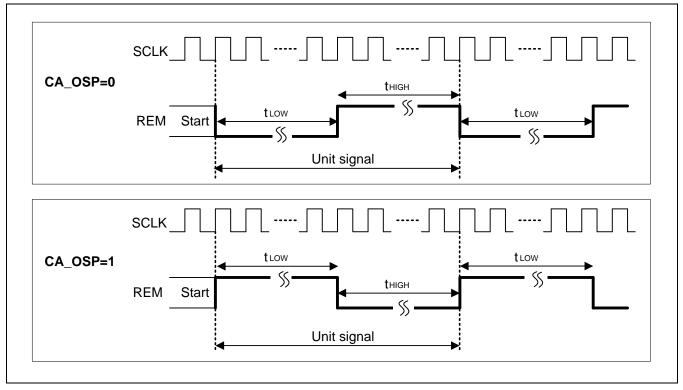



Figure 11-1 Counter A Block Diagram

11.2.2 Counter A Pulse Width Calculations

Figure 11-2 Counter A unit signal

To generate the above repeated waveform consisted of low period time, t_{LOW}, and high period time, t_{HIGH}.

When $CA_OSP = 0$,

$$\label{eq:tlow} \begin{split} t_{\text{LOW}} &= (\text{CADATAL} + 2) \times 1/\text{SCLK}. \ 0\text{H} < \text{CADATAL} < 10000\text{H}, \ \text{where SCLK} = \text{the selected clock}. \\ t_{\text{HIGH}} &= (\text{CADATAH} + 2) \times 1/\text{SCLK}. \ 0\text{H} < \text{CADATAH} < 10000\text{H}, \ \text{where SCLK} = \text{the selected clock}. \end{split}$$

When $CA_OSP = 1$,

$$\label{eq:tlow} \begin{split} t_{\text{LOW}} = (\text{CADATAH} + 2) \times 1/\text{SCLK}. \ 0\text{H} < \text{CADATAH} < 10000\text{H}, \ \text{where SCLK} = \text{the selected clock}. \\ t_{\text{HIGH}} = (\text{CADATAL} + 2) \times 1/\text{SCLK}. \ 0\text{H} < \text{CADATAL} < 10000\text{H}, \ \text{where SCLK} = \text{the selected clock}. \end{split}$$

NOTE: REM signal is a unit signal of CADATAL/H. If CA_STOP bit is set to high (Stop Counter A), REM signal is terminated after down-counting CADATAL and then CADATAH.

11.2.2.1 Example Counter A waveforms

11.2.2.1.1 To Generate 38 kHz, 1/3duty Signal Through P3.1

This example sets Counter A to the repeat mode, sets the oscillation frequency as the Counter A clock source, and CADATAH and CADATAL to make a 38 kHz, 1/3 Duty carrier frequency. The program parameters are:

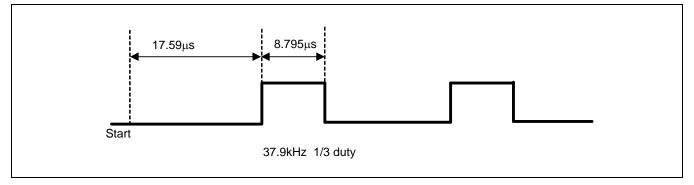
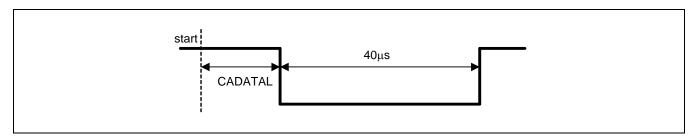



Figure 11-3 Counter A Block Diagram

- CACON0: CA_OSP = 0, CA_MODE = 1
- CACON1: CARRIRER_CON = 1, TA_ENVELOPE = 0
- CADATAL = 138 (17.59 μ s/0.125 μ s = 140.72 When oscillator frequency is 8 MHz)
- CADATAH = 68 (8.795 μ s/0.125 μ s = 70.36 When oscillator frequency is 8 MHz)

11.2.2.1.2 To Generate A One-Pulse Signal Through P3.1

This example sets Counter A to the one shot mode, sets the oscillation frequency as the Counter A clock source, and CADATAH and CADATAL to make a 40 μ s width pulse. The program parameters are:

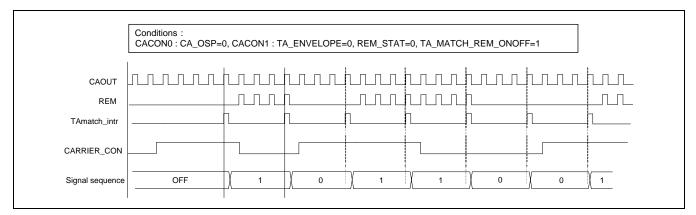
- CACON0: CA_OSP = 1, CA_MODE = 0
- CACON1: CARRIER_CON = 1, TA_ENVELOPE = 0
- CADATAL = Starting time
- CADATAL = 318 (40 μ s/0.125 μ s = 320 When oscillator frequency is 8 MHz)

г

11.2.3 Counter A Data Register Setting

	SCLK		
	CADATAL = 01-FFFFH CADATAH = 00H	Low	
CA_OSP = '0'	CADATAL = 00H CADATAH = 01-FFFFH	High	
CA_OSP = '1'	CADATAL = 01-FFFFH CADATAH = 00H	High	
UA_U3P = 1	CADATAL = 00H CADATAH = 01-FFFFH	Low	
CA_OSP = '0'	CADATAL = 00H CADATAH = 00H	High	
CA_OSP = '1'	CADATAL = 00H CADATAH = 00H	Low	

Figure 11-4 Counter A Output Flip-flop Waveforms in Repeat Mode



11.2.4 Counter A output Signal Waveform

Below waveforms are Counter A output signal waveform (REM).

If Envelope OFF and CARRIER ON:REM = CAOUTIf Envelope OFF and CARRIER OFF:REM = REM_STAT (CACON1.3)If Envelope ON and CARRIER ON:REM = HighIf Envelope ON and CARRIER OFF:REM = Low

REM is changed after TA match interrupt if CA_TAMATCH_RE_ONOFF is set to high.

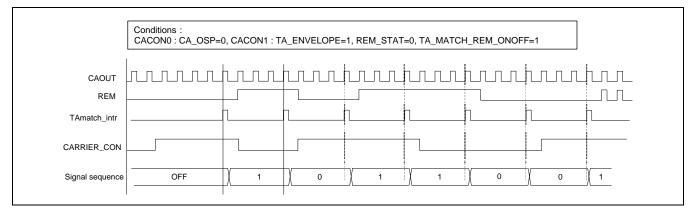


Figure 11-6 TA_ENVELOPE = 1

11.3 Register Description

11.3.1 Register Map Summary

Base Address: 0x400C_0000

Register	Offset	Description	Reset Value
CADATAH	0x0000	Counter A DATAH register	0x0000_0000
CADATAL	0x0004	Counter A DATAL register	0x0000_0000
CACON1	0x0008	Counter A control register 1	0x0000_0000
CACON0	0x000C	Counter A control register 0	0x0000_0180

11.3.1.1 CADATAH

- Base Address: 0x400C_0000
- Address = Base Address + 0x0000, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								~															Π	Ę							
								RSVD															A D A T								
																							č	5							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:16]	R	Reserved (Not used)	0
CADATAH	[15:0]	RW	Counter A high DATAH value	0

11.3.1.2 CADATAL

- Base Address: 0x400C_0000
- Address = Base Address + 0x0004, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																								Ľ							
							i	RSVD																							
																							Ċ	J							
															0																
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																W	W	W	W	W	W	W	W	W	W	w	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:16]	R	Reserved (Not used)	0
CADATAL	[15:0]	RW	Counter A low DATAH value	0

SAMSUNG ELECTRONICS

11.3.1.3 CACON1

- Base Address: 0x400C_0000
- Address = Base Address + 0x0008, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												RSVD														CARRIER_CON	TA_ENVELOPE	REM_STAT	TC0_MATCH_REM_ONO FF	CA_HW_STROBE_DATA	CA_SW_STROBE_DATA
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	RW	R	R
																										W	W	W		W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:6]	R	Reserved (Not used)	0
CARRIER _CON	[5]	RW	Carrier signal control bit 0 = Carrier off 1 = Carrier on (This bit is operated by TA match interrupt)	0
TA_ ENVELOPE	[4]	RW	REM signal selection bit 0 = Carrier signal 1 = Envelope signal	0
REM_STAT	[3]	RW	REM port status (when carrier off) 0 = Low 1 = High	0
TA_MATCH_R EM_ONOFF	[2]	RW	CARRIER_CON (CACON1.5) control bit when TA match interrupt occurs 0 = Disable 1 = Enable ⁽¹⁾	0
CA_HW _STROBE _DATA	[1]	RW	Counter A data register H/W strobe bit 0 = Disable 1 = Enable TA match interrupt ⁽²⁾	0
CA_SW _STROBE _DATA	[0]	RW	Counter A data register S/W strobe bit 0 = No effect 1 = Load CADATA (Auto-clear)	0

NOTE:

1. CACON1[2] = 0: No effect

CACON1[2] = 1: If CARRIER_CON = 0 & TA_ENVELOPE = 0, carrier signal is off after TA Match interrupt. If CARRIER_CON = 1 & TA_ENVELOPE = 0, carrier signal is on after TA Match interrupt. If CARRIER_CON = 0 & TA_ENVELOPE = 1, envelope signal is off after TA Match interrupt. If CARRIER_CON = 1 & TA_ENVELOPE = 1, envelope signal is on after TA Match interrupt.

 CACON1[1] = 0: No effect CACON1[1] = 1: Whenever TA Match interrupt occurs, CADATAH,L is loaded into 16-bit down-counter.

11.3.1.4 CACON0

- Base Address: 0X400C_0000
- Address = Base Address + 0x000C, Reset Value = 0x0000_0180

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								RSVD											RSVD			CA_STAT		CA_CLK		CA_INTTIME	CA_INTEN	CA_STOP	CA_START	CA_MODE	CA_OSP
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 1	1 1	0 0	0 0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W		R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:10]	R	Reserved (Not used)	0
CA_STAT	[9]	R	Counter A status bit 0 = Counter A is stopped 1 = Counter A is started	0
CA_CLK	[8:7]	RW	Counter A input clock selection bit 00 = SCLK 01 = SCLK/2 10 = SCLK/4 11 = SCLK/8	11
CA_INTTIME	[6:5]	RW	Counter A interrupt time selection bit 00 = Elapsed time for low data value 01 = Elapsed time for high data value 10 = Elapsed time for low and high data values 11 = Invalid setting	00
CA_INTEN	[4]	RW	Counter A interrupt enable bit 0 = Disable interrupt 1 = Enable interrupt	0
CA_STOP	[3]	RW	Counter A Stop bit 0 = Clear CA_STOP bit ^(NOTE) 1 = Stop counter A	0
CA_START	[2]	RW	Counter A Start bit 0 = No effect 1 = Start counter A (This bit is auto-cleared to 0 after counter A is started)	0
CA_MODE	[1]	RW	Counter A mode selection bit 0 = One shot mode 1 = Repeating mode	0

Name	Bit	Туре	Description	Reset Value
CA_OSP	[0]	RW	Counter A output starting polarity control bit 0 = Low 1 = High	0

NOTE: In order to restart counter A, CA_STOP is set to low and CA_START bit is set to high. (After restarting, CA_START bit is auto-clear)

	•	
	•	
	•	
	•	
	•	

12 Timer/Counter

12.1 Overview

This chapter describes Timer/Counter module. The Timer/Counter (Hereinafter, TC) can operate in match & overflow operation, capture operation, interval operation or PWM operation. The TC can also generate PWM signals via the dedicated pin and supports an external clock as its source clock.

12.1.1 Features

- Timer/Counter consist of Timer/Counter A (Hereinafter, TA), Timer/Counter 1 (Hereinafter, T1), Timer/Counter 2 (Hereinafter, T2)
- Programmable clock source for timer, including an external clock and counter A output signal (Carrier frequency generator)
- Programmable n-bit up counter with up to 32-bit
- One-shot operation or repeated operation
- Match & Overflow operation
- Capture operation
 - Capture on rising edge, falling edge or both edges
 - Two capture registers for each edge
- Interval operation
- PWM operation
 - Programmable duty cycle and frequency
 - Programmable active level and idle level
 - Up to 22-bit resolution including extension function
- Debug option

12.1.2 Pin Description

Table 12-1 Pin Description

Pin Name	Function	I/O Type	Comments
TCLKn	External clock input pin	Ι	_
TCAPn	Capture pin	Ι	_
TPWMn	PWM output pin	0	_

NOTE: "n" means the channel number of TIMER/COUNTER. For example, they'll be TCLK0, TCAP0, and TPWM0, where "n" is 0.

12.2 Functional Description

12.2.1 Block Diagram

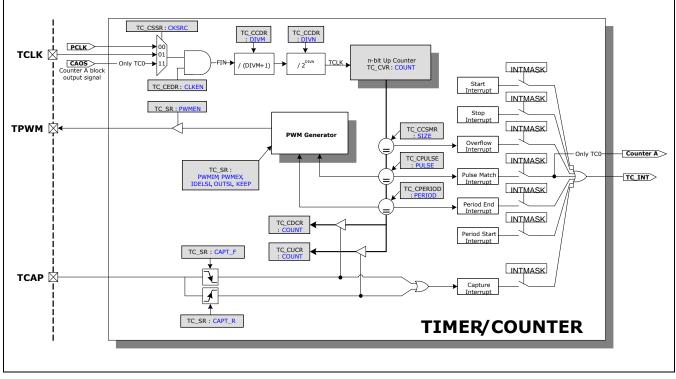


Figure 12-1 TC Block Diagram

NOTE: TCLK is a pin defined to assert the timer clock. That will be supported from an external clock source, instead of PCLK supported from an internal clock source. It must be equal or less than PCLK.

12.2.2 Counter Size

There are two registers for the counter size, TC_CSMR (Counter Size Mask Register) and TC_CCSMR (Current Counter Size Mask Register). They include the SIZE[4:0] field. If the value of SIZE[4:0] is n, TC will become a (n + 1) bit timer. In other words, this timer can count from 1 to $2^{(n+1)} - 1$. It can be up to a 32-bit timer.

TC_CSMR is copied to the TC_CCSMR when the TC starts or UPDATE bit in TC_CSR (Control Set Register) is set. It shows the information for the counter bit size of a current operating timer. During the operation, it can prepare the new counter size with TC_CSMR.

12.2.3 Counter Clock

12.2.3.1 Clock Source

TC can use one of 2 different clocks (Internal or external clock). An internal clock is PCLK and external clock is asserted via TCLK pin. To use the external clock supplied by TCLK, pin configuration should be done before starting the timer. In case of using an external clock for the timer clock, the frequency of the external clock should be less than or equal to the frequency of PCLK.

But TC0's clock source can be set to internal, external clock and CAOS (Counter a block Output Signal).

12.2.3.2 Counter Clock

The counter clock based on FIN is determined by DIVM[10:0] and DIVN[3:0] in TC_CCDR (Current Clock Divider Register). The frequency of the counter clock is TCCLK determined by FIN and the internal clock divider (DIVM and DIVN).

• TCCLK = $FIN/2^{DIVN}/(DIVM + 1)$

Counter Resolution = 1/TCCLK

Since TC_CCDR is read only, DIVM and DIVN in TC_CDR (Clock Divider Register) should be modified. They are copied to TC_CCDR when the timer starts or UPDATE bit in TC_CSR register is set.

Caution: It is forbidden to set DIVM to zero when DIVN is not zero. For example, If the counter clock is 4 times slower than the clock source, followings are allowed: - DIVN = 0 and DIVM = 3 - DIVN = 1 and DIVM = 1 But following is forbidden: - DIVN = 2 and DIVM = 0

12.2.4 Debug Option

According to DBGEN bit in TC_CEDR register, the counter can be frozen when the CPU is halted in debug mode.

12.2.5 Overflow Mode

When OVFM bit in TC_SR register is set, the timer operates as Overflow Mode. In this mode, the counter value is increased until $2^{(SIZE + 1)} - 1$, where SIZE is specified in TC_CCSMR (Current Counter Size Mask Register). And then the counter value is cleared to "0" when REPEAT bit is clear in TC_SR register, and Stop interrupt and Overflow interrupt are generated. PERIOD bits in TC_CPRDR register should be set and greater than "0" before starting the timer even though PERIOD is not used.

12.2.5.1 Match & Overflow Operation

When the timer is starting, Start interrupt and Period Start interrupt are generated. And then pulse match interrupt will be generated after the counter value is identical to PULSE bits in TC_CPULR register and period end interrupt will be generated after the counter value is identical to PERIOD bits in TC_CPRDR register. Lastly, Overflow interrupt will be generated when the counter overflows. If REPEAT bit in TC_SR register is set on overflow, the counter value is changed to "1" and the timer is restarted automatically.

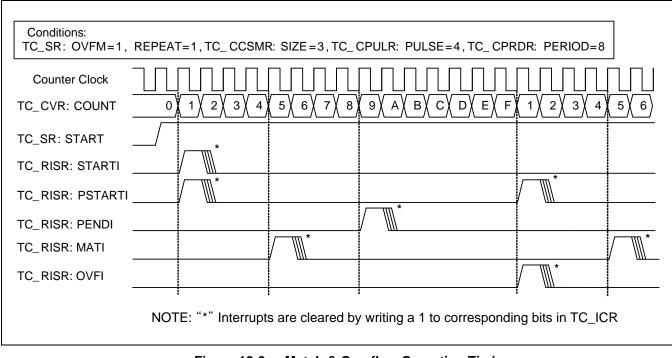
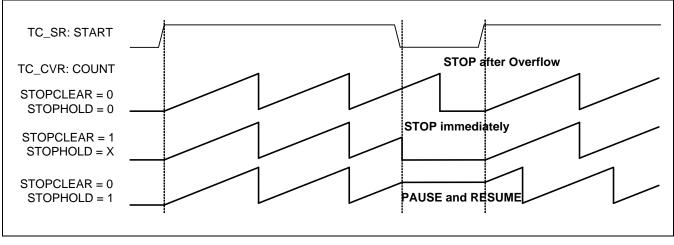



Figure 12-2 Match & Overflow Operation Timing

To stop the timer, START bit in TC_SR should be cleared by writing a 1 to START bit in TC_CCR register. The timer stops differently according to STOPHOLD bit and STOPCLEAR bit in TC_SR register.

Figure 12-3 Counter Values According to START, STOPCLEAR and STOPHOLD

When both STOPHOLD and STOPCLEAR are clear, clearing START bit in TC_SR register makes the timer stop when the counter value is cleared to "0" after it overflows. In order to stop the timer immediately, START bit in TC_SR should be cleared when STOPCLEAR bit in TC_SR register is set. The timer is stopped immediately and the counter value is cleared to "0". In order to pause the timer immediately, STOPHOLD bit in TC_SR should be set but STOPCLEAR bit should be clear before clearing START bit. The timer is stopped immediately but the timer holds the counter value. Therefore when the timer is resumed by setting START bit again, the counter value will be increased continuously from the last value it has kept.

12.2.5.2 Capture Operation

The TC can perform the capturing operation which is that the counter value is transferred into the capture register, TC_CUCR (Capture up Counter Register) and TC_CDCR (Capture Down Counter Register) in synchronization with an external trigger. The time difference between external events could be measured with this operation. The external triggering signal for capturing operation is a pre-defined valid edge on the capture input pin. When the specified edge signal is detected, the counter value in process should be copied into the capture register, TC_CUCR or TC_CDCR. The external trigger signal on TCAP pin should be kept at least for three times longer than PCLK in order to distinguish from glitch signals. When either CAPT_R or CAPT_F is set, the capture function always operates regardless of whether the timer is running or not.

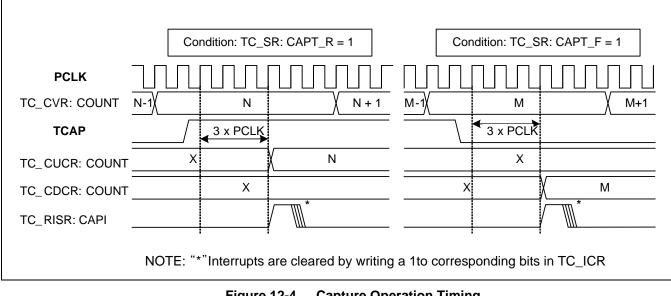


Figure 12-4 **Capture Operation Timing**

Caution: The TIMER/COUNTER doesn't supports the capture operation only when the clock source is an external clock, TCLK.

12.2.6 Period Mode

The TC operates in Period Mode when OVFM bit in TC_SR register is clear. In this mode, the counter value is increased from 1 to PERIOD bits in TC_CPRDR register. When the counter value has reached PERIOD value, Period End event is generated. If REPEAT bit in TC_SR register is set, the counter value restarts from 1. If REPEAT is clear, the timer stops and the counter value is cleared to "0".

During operation, TC_CPRDR and TC_CPULR represent the current configured values. PERIOD in TC_CPRDR and PULSE in TC_CPULR are changed to new values specified by TC_PRDR and TC_PULR respectively when the timer starts or UPDATE bit in TC_CSR register is set. PERIOD should be set and greater than "1" before starting the timer.

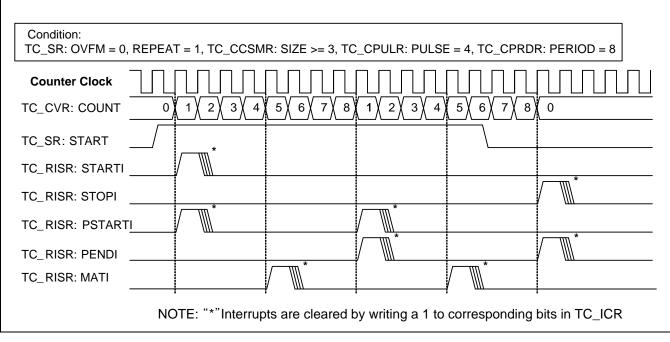


Figure 12-5 Period Mode Timing

The TC can also generate two types of output signals according to PWMIM bit in TC_SR register, Interval signal and PWM signal. PWMEN bit in TC_SR register should be set in order to output the signal generated via the TPWM pin as well as the pin should be configured as the relevant alternative function.

12.2.6.1 Interval Operation

In the interval operation, TPWM output level toggles whenever the period end condition is detected. If, for example, you write the value "0x08" to TC_PRDR, the counter will increment until it reaches "0x08". The period of TPWM is $2 \times TCCLK \times PERIOD$.

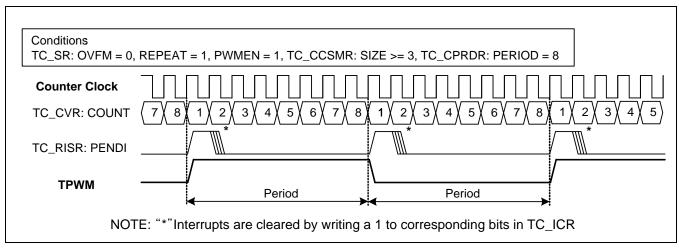


Figure 12-6 Interval Operation

12.2.6.2 PWM Operation

The TC can be used for generating the PWM (Pulse Width Modulation) signal. In this operation, TC_CPULR register should be specified by writing a relevant value to PULSE bits in TC_PULR register. PULSE bits in TC_PULR register are copied into TC_CPULR register when the timer starts or UPDATE bit in TC_CSR is set. TC_CPULR must be less than or equal to TC_CPRDR.

The TPWM output signal when the timer is started is determined by OUTSL bit in TC_SR register. The output signal will be LOW when OUTSL is clear and the output signal will be HIGH when OUTSL is set. When the counter value became equal to TC_CPULR, the pulse match signal is generated and TPWM output is toggled to the opposite level of OUTSL bit. After then, the counter value will be increased until PERIOD value specified in TC_CPRDR and the period end signal is generated. At this time, if REPEAT bit is set in TC_SR register, the counter value is restarted from 1. If REPEAT is clear, the timer stops and the counter value is cleared to "0".

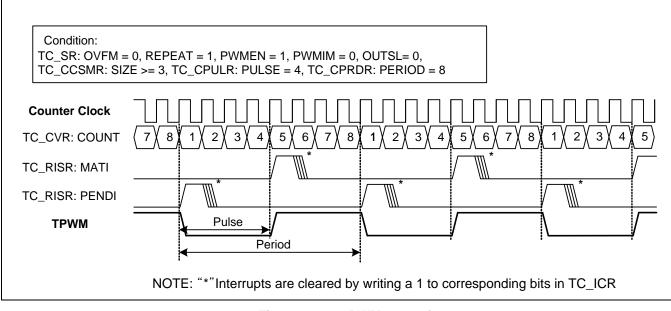


Figure 12-7 PWM Operation

12.2.6.2.1 Extension Bit

Some Periods in every 64 Periods can be Extension Periods. Extension Period has an extended Pulse width which is a counter clock longer than one of a normal Period. It is determined by PWMEX bits in TC_SR register which of Periods is Extension Period. Since PWMEX is 6 bits long, the PWM output has approximately up to 38-bit resolution though the counter is 32-bit long.

PWMEX Bit	Extension Period
PWMEX0	32
PWMEX1	16, 48
PWMEX2	8, 24, 40, 56
PWMEX3	4, 12, 20, 28, 36, 44, 52, 60
PWMEX4	2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
PWMEX5	1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63

Table 12-2 PWM Extension Bits

Following figure shows PWM output signals according to PWMEX bits.

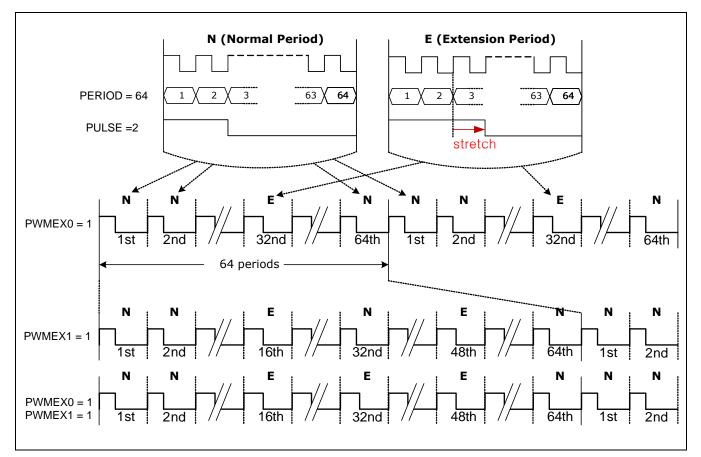
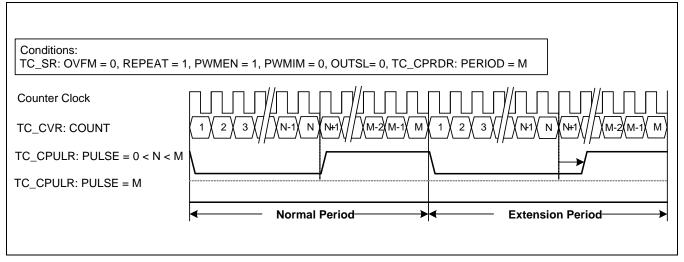


Figure 12-8 PWM Extension Waveform

Duty of PWM signal can be calculated as following equation.

$$Duty(\%) = \left(\frac{(PULSE \times (64 - E)) + (PULSE + 1) \times E}{PERIOD \times 64}\right) \times 100 = \left(\frac{PULSE}{PERIOD} + \frac{E}{PERIOD \times 64}\right) \times 100$$
, where 'E' is number of Extension Periods in every 64 periods.


For example, the PWM output has normally 50 % duty when PERIOD is 100 and PULSE is 50. If PWMEX0 is only set in this case, the pulse cycle of the 32nd period in 64 periods has 51 counter clocks. Therefore the PWM output has 50.015625 % duty because 1/64 is 0.015625. If PWMEX5 is only set, 32 periods in every 64 periods are Extension Periods and the duty would be 50.5 %.

12.2.6.2.2 PWM Waveform

<u>Figure 12-9</u> and <u>Figure 12-10</u> illustrates PWM waveforms according to the relationship between PERIOD and PULSE in the PWM operation. The TC does not support 0 % duty of PWM signal. Therefore you should set PULSE to a value greater than 0. When PULSE is equal to PERIOD, the PWM duty is 100 %.

The OUTSL bit in TC_SR register determines the output level on TPWM pin when the timer is running. The TPWM signal starts from LOW when OUTSL bit is clear.

If OUTSL bit is set, the TPWM signal starts from HIGH.

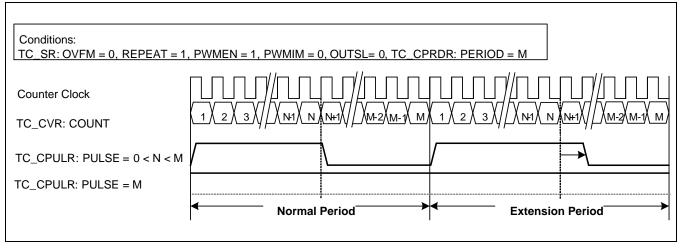


Figure 12-10 PWM Waveform with OUTSL = 1

12.2.6.2.3 PWM Output Polarity

The PWM output polarity on TPWM pin can have different states according to STOPCLEAR, STOPHOLD, KEEP, IDLESL and OUTSL in TC_SR register when the timer is stopped. Following table shows the differences of output polarity according to control bits.

STOPCLEAR	STOPHOLD	KEEP	IDLESL	OUTSL	TPWM	Note
0	0	0	0	Х	L	The timer is stopped at the end of
0	0	0	1	Х	Н	period and TPWM is IDLESL
0	0	1	Х	0	Н	The timer is stopped at the end of
0	0	1	Х	1	L	period and TPWM is the opposite of OUTSL
0	1	х	х	х	L/H	The timer is paused immediately and TPWM keeps the last level.
1	Х	Х	0	Х	L	The timer is stopped immediately
1	Х	Х	1	Х	Н	and TPWM is IDLESL.

 Table 12-3
 PWM Output Polarity According to Control Bits

NOTE: Priorities among control bits are STOPCLEAR > STOPHOLD > KEEP > IDLESL.

Clearing START bit when both STOPHOLD and STOPCLEAR are clear makes the timer stop after the current PERIOD cycle has been finished. In this state, the TC keeps the output level on TPWM pin, same as the opposite level of OUTSL, if KEEP bit in TC_SR register is set. If KEEP is clear, the output level on TPWM pin is determined by IDLESL bit in TC_SR register.

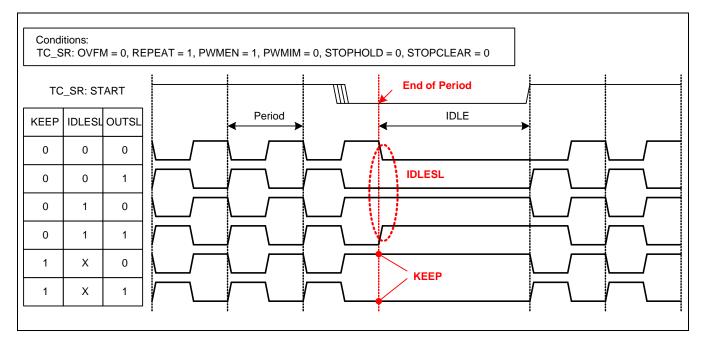


Figure 12-11 PWM Waveform Under IDLE State

If STOPHOLD bit in TC_SR register is set but STOPCLEAR bit in TC_SR register is clear when clearing START, the TIMER/COUNTER stops to increase the counter value immediately and keeps the counter value and the output level on TPWM pin. By setting START again, the TIMER/COUNTER restarts to increase the counter value from the last value it has kept when it stops.

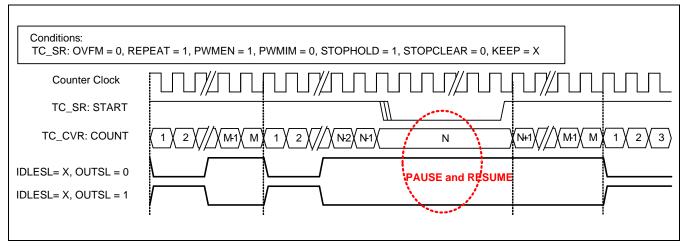


Figure 12-12 PWM Waveform with STOPHOLD = 1, STOPCLEAR = 0

If STOPCLEAR bit in TC_SR register is set when clearing START bit, the TIMER/COUNTER stops immediately and the output level on TPWM pin is changed to the level specified by IDELSL bit in TC_SR register.

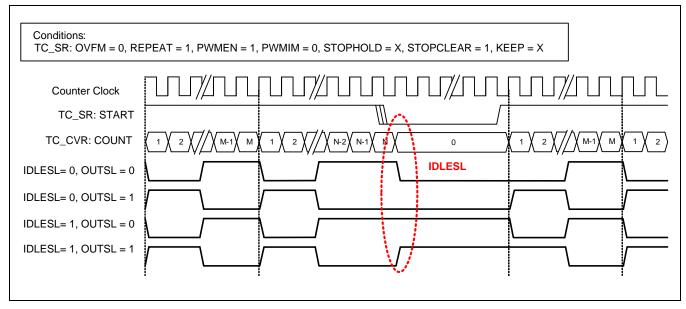


Figure 12-13 PWM Waveform with STOPCLEAR = 1

When the TIMER/COUNTER is reset, the initial level of output signal is LOW. By changing IDELSL bit when STOPCLEAR bit is set and the timer is not running, the output level can be immediately changed to the level specified by IDLESL bit.

12.2.7 Interrupt

The TIMER/COUNTER can generate 7 types of an interrupt, STARTI, STOPI, PSTARTI, PENDI, MATI, OVFI and CAPTI.

12.2.7.1 Start Interrupt

Start interrupt can be generated when the timer starts.

12.2.7.2 Stop Interrupt

Stop interrupt can be generated when the timer stops

12.2.7.3 Period Start Interrupt

Period Start interrupt can be generated when the period starts.

12.2.7.4 Period End Interrupt

Period End interrupt can be generated when the period ends.

12.2.7.5 Pulse Match Interrupt

Pulse Match interrupt can be generated when the counter value is identical to the value read from the current pulse register, TC_CPULSE.

12.2.7.6 Overflow Interrupt

The timer can run up to the overflow of counter value and generate Overflow interrupt, also.

12.2.7.7 Capture Interrupt

Capture interrupt can be generated when the external capture signal is triggered.

12.2.7.8 Interruption Handling

- Interrupt Service Routine (ISR) Entry and call C function
- Read TC_IMSR and verify the source of the interrupt
- Clear the corresponding interrupt at peripheral level by writing in the TC_ICR
- Interrupt treatment
- ISR Exit

12.3 Register Description

12.3.1 Register Map Summary

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000

Register	Offset	Description	Reset Value
TC_IDR	0x0000	ID register	0x0011_000A
TC_CSSR	0x0004	Clock source selection register	0x0000_0000
TC_CEDR	0x0008	Clock enable/disable register	0x0000_0000
TC_SRR	0x000C	Software reset register	0x0000_0000
TC_CSR	0x0010	Control set register	0x0000_0000
TC_CCR	0x0014	Control clear register	0x0000_0000
TC_SR	0x0018	Status register	0x0000_0000
TC_IMSCR	0x001C	Interrupt mask set/clear register	0x0000_0000
TC_RISR	0x0020	Raw interrupt status register	0x0000_0000
TC_MISR	0x0024	Masked interrupt status register	0x0000_0000
TC_ICR	0x0028	Interrupt clear register	0x0000_0000
TC_CDR	0x002C	Clock divider register	0x0000_0000
TC_CSMR	0x0030	Counter size mask register	0x0000_000F
TC_PRDR	0x0034	Period register	0x0000_0000
TC_PULR	0x0038	Pulse register	0x0000_0000
TC_CCDR	0x003C	Current clock divider register	0x0000_0000
TC_CCSMR	0x0040	Current counter size mask register	0x0000_000F
TC_CPRDR	0x0044	Current period register	0x0000_0000
TC_CPULR	0x0048	Current pulse register	0x0000_0000
TC_CUCR	0x004C	Capture up count register	0x0000_0000
TC_CDCR	0x0050	Capture down count register	0x0000_0000
TC_CVR	0x0054	Counter value register	0x0000_0000

12.3.1.1 TC_IDR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0000, Reset Value = 0x0011_000A

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			RSVD																IDCODE												
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:26]	R	Reserved	0
IDCODE	[25:0]	R	ID code register. This field stores the ID code for the corresponding IP.	0x0011_000A

12.3.1.2 TC_CSSR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0004, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															2															CLKSRC (TC0)	CLKSRC
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																														W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:2]	R	Reserved	0
CLKSRC	[1:0]	RW	 TA's clock source selection field. 00 = Counter clock source is PCLK 01 = Counter clock source is external clock which is provided through TCLK pin. 10 = Invalid setting 11 = Counter clock source is CAOS (Counter A output signal) T1, 2's clock source selection field. 00 = Counter clock source is PCLK 01 = Counter clock source is external clock which is provided through TCLK pin. 	0

Caution: The frequency of external clock should be slower than PCLK.

When the Timer/Counter clock is enabled, User cannot change CLKSRC. Thus before changing CLKSRC, user must disable the clock enable bit of clock enable register.

12.3.1.3 TC_CEDR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0008, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DBGEN															U//S/A																CLKEN
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W

Name	Bit	Туре	Description	Reset Value
DBGEN	[31]	RW	Debug mode enable/Disable control bit. 0 = Disable debug mode. 1 = Enable debug mode. If DBGEN is set, the counter is frozen when the CPU is halted in debug mode.	0
RSVD	[30:1]	R	Reserved	0
CLKEN	[0]	RW	Clock enable/Disable control bit. 0 = Disable counter clock. 1 = Enable counter clock. SWRST doesn't affect CLKEN bit status.	0

Caution: When you set CLKEN to "0" or the CPU is halted in debug mode when DBGEN is set, the TPWM output will be float (tri-state).

CLKEN should be set before writing to other registers. It is ignored to write to registers when CLKEN is clear. Regardless of CLKEN, Reading from registers and writing to DBGEN and SWRST are always available.

12.3.1.4 TC_SRR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x000C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															۷D																RST
															RSV																SWR
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	w

Name	Bit	Туре	Description	Reset Value
RSVD	[31:1]	R	Reserved	0
SWRST	[0]	W	Software reset. 0 = No effect 1 = Timer/Counter software reset	0

12.3.1.5 TC_CSR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0010, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RSVD	PWMEX5	PWMEX4	PWMEX3	PWMEX2	PWMEX1	PWME X0			RSVD			CAPT_R	CAPT_F		RSVD	MAVO	REPEAT	PWMEN	WIWMd	KEEP	OUTSL	IDLESL			RSVD		STOPCLEAR	STOPHOLD	UPDATE	START
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	W	W	W	W	W	W	R	R	R	R	R	W	W	F	2	W	W	W	W	W	W	W	R	R	R	R	W	W	W	W

Name	Bit	Туре		Description	Reset Value
RSVD	[31:30]	R	Reserved		0
			PWM output e 0 = No effect 1 = Enable co PWMEX	extension. rresponding extension bits. "Stretched" Cycle Number	
			PWMEX0	32	
			PWMEX1	16, 48	
PWMEX	[29:24]	W	PWMEX2	8, 24, 40, 56	0
			PWMEX3	4, 12, 20, 28, 36, 44, 52, 60	
			PWMEX4	2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62	
			PWMEX5	1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63	
RSVD	[23:19]	R	Reserved		0
CAPT_R	[18]	w	0 = No effect. 1 = When risir	ing edge trigger. ng edge of external input signal is detected, unter value is stored into the capture up	0
CAPT_F	[17]	w	0 = No effect. 1 = When fallin	ling edge trigger. ng edge of external input signal is detected, unter value is stored into the capture down	0

SAMSUNG ELECTRONICS

Name	Bit	Туре	Description	Reset Value
RSVD	[16:15]	R	Reserved	0
OVFM	[14]	W	Overflow mode. 0 = No effect. 1 = Enable overflow mode. The counter value is increased until it overflows.	0
REPEAT	[13]	W	Repeat mode. 0 = No effect. 1 = Enable repeat mode.	0
PWMEN	[12]	W	PWM enable. 0 = No effect. 1 = Enable the signal output.	0
PWMIM	[11]	W	Interval mode. 0 = No effect 1 = PWM output will be toggled at the end of period.	0
KEEP	[10]	W	Keep stop level. 0 = No effect. 1 = Enable keep state mode.	0
OUTSL	[9]	W	Output start level 0 = No effect. 1 = The output signal level will be HIGH when starting.	0
IDLESL	[8]	W	IDLE state level. 0 = No effect. 1 = The output signal level will be HIGH in Idle state.	0
RSVD	[7:4]	R	Reserved	0
STOPCLEAR	[3]	W	Stop count clear. 0 = No effect. 1 = Enable stop clear mode.	0
STOPHOLD	[2]	W	Stop count hold. 0 = No effect. 1 = Enable stop hold mode.	0
UPDATE	[1]	W	Update parameters. 0 = No effect. 1 = Update TC_CCDR, TC_CCSMR, TC_CPRDR and TC_CPULR registers immediately to new values specified by TC_CDR, TC_CSMR, TC_PRDR and TC_PULR respectively.	0
START	[0]	W	0 = No effect. 1 = Start the counter.	0

Caution: By setting UPDATE bit while the timer is running, TC_CCDR, TC_CCSMR, TC_CPRDR and TC_CPULR registers are changed immediately. But values in them will take effect only after Overflow event in Overflow mode or Period End event in Period mode.

SAMSUNG ELECTRONICS

12.3.1.6 TC_CCR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0014, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RSVD	PWMEX5	PWMEX4	PWMEX3	PWMEX2	PWMEX1	PWMEX0			RSVD			CAPT_R	CAPT_F		KSVD	OVFM	REPEAT	PWMEN	WIWMd	KEEP	OUTSL	IDLESL			RSVD		STOPCLEAR	STOPHOLD	RSVD	START
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	W	W	W	W	W	W	R	R	R	R	R	W	W	F	2	W	W	W	W	W	W	W	R	R	R	R	W	W	W	w

Name	Bit	Туре		Description	Reset Value
RSVD	[31:30]	R	Reserved		0
				responding extension bits.	
			PWMEX	"Stretched" Cycle Number	
			PWMEX0	32	
			PWMEX1	16, 48	
PWMEX	[29:24]	W	PWMEX2	8, 24, 40, 56	0
			PWMEX3	4, 12, 20, 28, 36 , 44, 52, 60	
			PWMEX4	2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62	
			PWMEX5	1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63	
RSVD	[23:19]	R	Reserved		0
CAPT_R	[18]	W	0 = No effect.	ng edge trigger. ng edge capture.	0
CAPT_F	[17]	W	0 = No effect.	ng edge trigger. ing edge capture.	0
RSVD	[16:15]	R	Reserved		0
OVFM	[14]	W	Overflow mode 0 = No effect. 1 = Disable ove	erflow mode. The counter value is	0

SAMSUNG ELECTRONICS

Name	Bit	Туре	Description	Reset Value
			increased until the end of period.	
REPEAT	[13]	w	Repeat mode. 0 = No effect. 1 = Disable repeat mode.	0
PWMEN	[12]	W	PWM enable. 0 = No effect. 1 = Disable the signal output.	0
PWMIM	[11]	W	Interval mode. 0 = No effect 1 = Disable interval mode. The type of output signal is PWM operation.	0
KEEP	[10]	w	Keep stop level. 0 = No effect. 1 = Disable keep state mode.	0
OUTSL	[9]	W	Output start level 0 = No effect. 1 = The output signal level will be LOW when starting.	0
IDLESL	[8]	w	IDLE state level. 0 = No effect 1 = The output signal level will be LOW in Idle state.	0
RSVD	[7:4]	R	Reserved	0
STOPCLEAR	[3]	w	Stop count clear. 0 = No effect. 1 = Disable stop clear mode.	0
STOPHOLD	[2]	w	Stop count hold. 0 = No effect. 1 = Disable stop hold mode.	0
RSVD	[1]	W	Reserved	0
START	[0]	W	0 = No effect. 1 = Stop the counter.	0

12.3.1.7 TC_SR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0018, Reset Value = 0x0000_0000

31	3	0	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RSVD		PWMEX5	PWMEX4	PWMEX3	PWMEX2	1 NMMEX 1	PWMEX0			RSVD			CAPT_R	CAPT_F		UVCN	OVFM	REPEAT	NAMEN	MIMMd	KEEP	OUTSL	IDLESL			RSVD		STOPCLEAR	STOPHOLD	RSVD	START
0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	F	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	2	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре		Description	Reset Value
RSVD	[31:30]	R	Reserved		0
				ding extension bits are disabled. ding extension bits are enabled.	
			PWMEX0	"Stretched" Cycle Number	
			PWMEX0	16, 48	
PWMEX	[29:24]	R	PWMEX2	8, 24, 40, 56	0
			PWMEX3	4, 12, 20, 28, 36 , 44, 52, 60	
			PWMEX4	2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62	
			PWMEX5	1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63	
RSVD	[23:19]	R	Reserved		0
CAPT_R	[18]	R	0 = External ris 1 = External ris edge of externa	ng edge trigger. ing edge capture is disabled. ing edge capture is enabled. When rising al input signal is detected, the current s stored into the capture up register.	0
CAPT_F	[17]	R	0 = External fail 1 = External fail edge of externa	ing edge trigger. Iling edge capture is disabled. Iling edge capture is enabled. When falling al input signal is detected, the current s stored into the capture down register.	0
RSVD	[16:15]	R	Reserved		0

Name	Bit	Туре	Description	Reset Value
OVFM	[14]	R	Overflow mode. 0 = Period mode is enabled. The counter value is increased until the end of period. 1 = Overflow mode is enabled. The counter value is increased until it overflows.	0
REPEAT	[13]	R	Repeat mode. 0 = Repeat mode is disabled. 1 = Repeat mode is enabled. The counter is automatically restarted after it overflows in Overflow mode or the end of period in Period mode.	0
PWMEN	[12]	R	PWM enable. 0 = The signal output is disabled. 1 = The signal output is enabled.	0
PWMIM	[11]	R	Interval mode. 0 = The type of output signal is PWM operation. 1 = The type of output signal is Interval operation.	0
KEEP	[10]	R	 Keep stop level. 0 = Keep state mode is disabled. 1 = Keep state mode is enabled. Keep the output signal level as the last level after the counter is stopped regardless of IDLESL. 	0
OUTSL	[9]	R	Output start level. 0 = The output signal level is LOW when starting. 1 = The output signal level is HIGH when starting.	0
IDLESL	[8]	R	IDLE state level. 0 = The output signal level is LOW in Idle state. 1 = The output signal level is HIGH in Idle state.	0
RSVD	[7:4]	R	Reserved	0
STOPCLEAR	[3]	R	Stop count clear. 0 = Stop clear mode is disabled. 1 = Stop clear mode is enabled. By clearing START when STOPCLEAR is set, the counter is stopped and cleared to zero. The output signal level is determined by IDLESL.	0
STOPHOLD	[2]	R	Stop count hold. 0 = Stop hold mode is disabled. 1 = Stop hold mode is enabled. By clearing START when STOPHOLD is set, the counter is stopped but keeps the current counter value and the output signal level. So the counter is resumed when START is set again.	0
RSVD	[1]	R	Reserved	0
START	[0]	R	0 = The counter is stopped. 1 = The counter is started.	0

12.3.1.8 TC_IMSCR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x001C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												RSVD													CAPTI	OVFI	MATI	PENDI	PSTARTI	STOPI	STARTI
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:7]	R	Reserved	0
CAPTI	[6]	RW	Capture interrupt mask. 0 = This interrupt is masked. (Disable this interrupt.) 1 = This interrupt is not masked. (Enable this interrupt.)	0
OVFI	[5]	RW	Overflow interrupt mask. 0 = This interrupt is masked. (Disable this interrupt.) 1 = This interrupt is not masked. (Enable this interrupt.)	0
ΜΑΤΙ	[4]	RW	Pulse match interrupt mask. 0 = This interrupt is masked. (Disable this interrupt.) 1 = This interrupt is not masked. (Enable this interrupt.)	0
PENDI	[3]	RW	Period end interrupt mask. 0 = This interrupt is masked. (Disable this interrupt.) 1 = This interrupt is not masked. (Enable this interrupt.)	0
PSTARTI	[2]	RW	Period start interrupt mask. 0 = This interrupt is masked. (Disable this interrupt.) 1 = This interrupt is not masked. (Enable this interrupt.)	0
STOPI	[1]	RW	Stop interrupt mask. 0 = This interrupt is masked. (Disable this interrupt.) 1 = This interrupt is not masked. (Enable this interrupt.)	0
STARTI	[0]	RW	Start interrupt mask. 0 = This interrupt is masked. (Disable this interrupt.) 1 = This interrupt is not masked. (Enable this interrupt.)	0

On a read this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

12.3.1.9 TC_RISR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0020, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-										RSVD													CAPTI	OVFI	MATI	PENDI	PSTARTI	STOPI	STARTI
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:7]	R	Reserved	0
CAPTI	[6]	R	Gives the raw interrupt state (Prior to masking) of the Capture interrupt.	0
OVFI	[5]	R	Gives the raw interrupt state (Prior to masking) of the Overflow interrupt.	0
ΜΑΤΙ	[4]	R	Gives the raw interrupt state (Prior to masking) of the Pulse Match interrupt.	0
PENDI	[3]	R	Gives the raw interrupt state (Prior to masking) of the Period End interrupt.	0
PSTARTI	[2]	R	Gives the raw interrupt state (Prior to masking) of the Period Start interrupt.	0
STOPI	[1]	R	Gives the raw interrupt state (Prior to masking) of the Stop interrupt.	0
STARTI	[0]	R	Gives the raw interrupt state (Prior to masking) of the Start interrupt.	0

TC_RISR does not affected by TC_IMSCR

On a read this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

12.3.1.10 TC_MISR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0024, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-										RSVD													CAPTI	OVFI	MATI	PENDI	PSTARTI	STOPI	STARTI
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:7]	R	Reserved	0
CAPTI	[6]	R	Gives the masked interrupt status (After masking) of the capture interrupt.	0
OVFI	[5]	R	Gives the masked interrupt status (After masking) of the overflow interrupt.	0
ΜΑΤΙ	[4]	R	Gives the masked interrupt status (After masking) of the pulse match interrupt.	0
PENDI	[3]	R	Gives the masked interrupt status (After masking) of the period end interrupt.	0
PSTARTI	[2]	R	Gives the masked interrupt status (After masking) of the period start interrupt.	0
STOPI	[1]	R	Gives the masked interrupt status (After masking) of the stop interrupt.	0
STARTI	[0]	R	Gives the masked interrupt status (After masking) of the start interrupt.	0

TC_MISR is affected by TC_IMSCR TC_MISR = TC_IMSCR & TC_RISR

On a read this register gives the current masked status value of the corresponding interrupt. A write has no effect.

0 = Each interrupt doesn't occur.

1 = Each interrupt occurs.

12.3.1.11 TC_ICR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0028, Reset Value = 0x0000_0000

31	3	0	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RSVD													CAPTI	OVFI	MATI	PENDI	PSTARTI	STOPI	STARTI
0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	F	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W	w	W	w	w	w	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:7]	R	Reserved	0
CAPTI	[6]	W	0 = No effect 1 = Clears the capture interrupt	0
OVFI	[5]	W	0 = No effect 1 = Clears the overflow interrupt	0
ΜΑΤΙ	[4]	W	0 = No effect 1 = Clears the pulse match interrupt	0
PENDI	[3]	W	0 = No effect 1 = Clears the period end interrupt	0
PSTARTI	[2]	W	0 = No effect 1 = Clears the period start interrupt	0
STOPI	[1]	W	0 = No effect 1 = Clears the stop interrupt	0
STARTI	[0]	W	0 = No effect 1 = Clears the start interrupt	0

On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

12.3.1.12 TC_CDR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x002C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								RSVD														DIVM								NVIO	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:15]	R	Reserved	0
DIVM	[14:4]	RW	Specifies DIVM.	0
DIVN	[3:0]	RW	Specifies DIVN.	0

Counter Clock is defined as following equation.

Timer Counter Clock = (Clock Source)/(DIVM + 1)/2^DIVN

NOTE: Writing TC_CDR register is completed when UPDATE = 1 or START = 1 condition of TC_CSR register.

Caution: It is forbidden to set DIVM to zero when DIVN is not zero. For example, If the counter clock is 4 times slower than the clock source, followings are allowed: - DIVN = 0 and DIVM = 3 - DIVN = 1 and DIVM = 1 But following is forbidden: - DIVN = 2 and DIVM = 0

12.3.1.13 TC_CSMR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0030, Reset Value = 0x0000_000F

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																														SIZE	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																												W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:4]	R	Reserved	0
SIZE	[4:0]	RW	 Specifies the counter size. For example: If SIZE is 0x07 then Timer/Counter acts as 8-bit Timer/Counter. If SIZE is 0x09 then Timer/Counter acts as 10-bit Timer/Counter. If SIZE is 0x0f then Timer/Counter acts as 16-bit Timer/Counter. If SIZE is 0x1f then Timer/Counter acts as 32-bit Timer/Counter. Writing TC_CSMR register is completed when UPDATE = 1 or START = 1 condition of TC_CSR register. 	0x1F

12.3.1.14 TC_PRDR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0034, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Ç	2															
															PERIOD																
															<u>ц</u>	-															
	•											1			1	1				T	1					1			1		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
PERIOD	[31:0]	RW	Specifies PERIOD value. Writing TC_PRDR register is completed when UPDATE = 1 or START = 1 condition of TC_CSR register.	0

Caution: PERIOD should be set to any value greater than "0" in Overflow mode or greater than "1" in Period mode before staring the timer.

12.3.1.15 TC_PULR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0038, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															ц	J															
															PI II SF)]]															
	-	1						1					1		1				r	r	1					1					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
PULSE	[31:0]	RW	Specifies PULSE value. Writing TC_PULR register is completed when UPDATE = 1 or START = 1 condition of TC_CSR register.	0

12.3.1.16 TC_CCDR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x003C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								_																							
								RSVD														DIVM								NVIO	
								ш														-							-	-	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:15]	R	Reserved	0
DIVM	[14:4]	R	Indicates current DIVM.	0
DIVN	[3:0]	R	Indicates current DIVN.	0

Counter Clock is defined as following equation.

Counter Clock = (Clock Source)/(DIVM + 1)/2^DIVN

12.3.1.17 TC_CCSMR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0040, Reset Value = 0x0000_000F

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													0																		
													RSVI																SIZE		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:5]	R	Reserved	0
SIZE	[4:0]	R	Indicates current counter size. The counter can count from 0 to $2^{(SIZE + 1)} - 1$.	0x1F

12.3.1.18 TC_CPRDR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0044, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															C	C															
															PERIOL																
															۵	-															
	-							-			-									-											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
PERIOD	[31:0]	R	Indicates current PERIOD value.	0

12.3.1.19 TC_CPULR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0048, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															ш	I															
															PLILSE																
	r	r	1					-									1		1	1											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
PULSE	[31:0]	R	Indicates current PULSE value.	0

12.3.1.20 TC_CUCR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x004C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Ę	;															
															COLIN																
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
COUNT	[31:0]	R	Indicates the counter value captured when the last rising edge is detected.	0

Caution: This register is only valid when the clock source is PCLK.

12.3.1.21 TC_CDCR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0050, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Ę	;															
							1	1							1		1		1												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
COUNT	[31:0]	R	Indicates the counter value captured when the last falling edge is detected.	0

Caution: This register is only valid when the clock source is PCLK.

12.3.1.22 TC_CVR

- TA Base Address: 0x400B_0000
- T1 Base Address: 0x4008_0000
- T2 Base Address: 0x4009_0000
- Address = Base Address + 0x0054, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Ę	;															
								1		1					1		1	1	1						1						
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
COUNT	[31:0]	R	Indicates the current counter value.	0

Caution: This register is only valid when the clock source is PCLK.

	•

13 Free Running Timer

13.1 Overview

This chapter describes a free running timer (FRT). FRT supports match function. The count size is 32-bit and clock source for timer can be SCLK or internal ring oscillator clock. To use of internal ring oscillator clock, FRT can operates in stop mode and can wake up from stop mode.

13.1.1 Features

- 32-bit free running timer
- Programmable clock source for timer, including internal ring oscillator clock
- Internal interrupt is generated on the occurrence of match to data buffer register (MATCH)
- Support a divider to generate the count clock.

13.2 Functional Description

13.2.1 Block Diagram

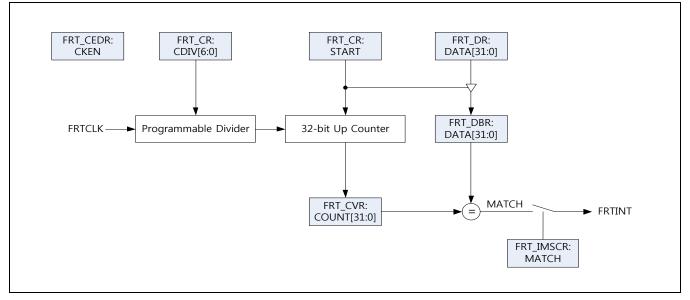


Figure 13-1 Free Running Timer Block Diagram

13.2.2 Timer Clock

13.2.2.1 Clock Source

FRT can use ICLK or SCLK and these clock sources are selected in internal oscillator control register (CLKCON1.3). The selected clock is referred to LCLK.

13.2.2.2 Count Clock

The count clock based on LCLK is determined by CDIV[6:0] in FRT_CR and by LDIV[1:0] in CLKCON1.

• FRTCLK = LCLK / LDIV / (CDIV + 1)

13.2.3 Count and Data register

The current counter value can be read in FRT_CVR register. FRT_DBR has the current value to generate a match signal. When a value is loaded from FRT_DR to FRT_DBR register and timer is started by START bit of FRT_CR register, the counter starts up-counting until the counter reaches 0xFFFFFFF. If counter meets the value of FRT_DBR during up-counting, FRT generates a match signal. FRT_DR will be copied (updated) the FRT_DBR when the timer start bit (FRT_CR.0) is written as "1" (one).

13.2.4 Interrupt

FRT supports MATCH interrupt. A match signal is generated when the counter value, FRT_CVR, is identical to the value written to the timer data register, FRT_DBR.

13.2.4.1 Interrupt Handling

- Interrupt Service Routine (ISR) Entry and call C function
- Save current FRT_CVR value into a variable 'A', for example
- Write FRT_DR for next match. To update FRT_DBR, write '1' in FRT_CR. (Optional)
- Wait until FRT_CVR is not the same as the match value 'A'
- Clear the match interrupt at peripheral level by writing in the FRT_ICR
- ISR Exit.

13.2.5 Operation

13.2.5.1 Match Operation

A match signal is generated when the counter value, FRT_CVR, is identical to the value written to the timer data register, FRT_DBR. The timer runs up to the overflow of counter value. After the overflow of counter value, the counter value will be counted from 0x00000000, again.

Counter Clock	
$\begin{array}{c c} FRT_ CVR \end{array} \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ \end{array}$	5 X XFFFD XFFFE FFFF 0 1 2 X
FRT_DBR	
FRT_IMSCR : MATCH / 1	
Match	

Figure 13-2 Simplified Timer Function Diagram: Match

13.3 Register Description

13.3.1 Register Map Summary

• Base Address: 0x400A_0000

Register	Offset	Description	Reset Value
FRT_IDR	0x0000	ID CODE register	0x0011_0018
FRT_CEDR	0x0004	Clock enable disable register	0x0000_0001
FRT_SRR	0x0008	Software reset register	0x0000_0000
FRT_CR	0x000C	Control register	0x0001_0001
FRT_SR	0x0010	Status register	0x0000_0000
FRT_IMSCR	0x0014	Interrupt enable register	0x0000_0001
FRT_RISR	0x0018	Interrupt mask status register	0x0000_0000
Reserved	0x001C	Reserved	0x0000_0000
FRT_ICR	0x0020	Interrupt clear register	0x0000_0000
FRT_DR	0x0024	Data register	0x0000_0000
FRT_DBR	0x0028	Data register buffer	0x0000_0000
FRT_CVR	0x002C	Counter value register	0x0000_0000

13.3.1.1 FRT_IDR

- Base Address: 0x400A_0000
- Address = Base Address + 0x0000, Reset Value = 0x0011_0018

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															~																
															RSVI																
							1	1				1	1	1	1					1					1						
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
IDCODE	[31:0]	R	Identification code register: Reset value of FRT_IDCODE is 0x0011_0018.	0x0011_0018

13.3.1.2 FRT_CEDR

• Base Address: 0x400A_0000

• Address = Base Address + 0x0004, Reset Value = 0x0000_0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DBGEN															UNSA																CKEN
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
R W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W

Name	Bit	Туре	Description	Reset Value
DBGEN	[31]	RW	DBGEN 0 = Debug mode clock is disabled 1 = Debug mode clock is enabled	0
RSVD	[30:1]	R	Reserved (Not used)	0
CKEN	[0]	W	CKEN 0 = Counter clock is disabled 1 = Counter clock is enabled	1

13.3.1.3 FRT_SRR

- Base Address: 0x400A_0000
- Address = Base Address + 0x0008, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RSVD																SWRST
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	w

Name	Bit	Туре	Description	Reset Value
RSVD	[31:1]	R	Reserved (Not used)	0
SWRST	[0]	W	SWRST 0 = No effect 1 = Free running timer software reset This resets FRT registers except FRT_CEDR. User should check reset release status in FRT_SR after software reset.	0

13.3.1.4 FRT_CR

- Base Address: 0x400A_0000
- Address = Base Address + 0x000C, Reset Value = 0x0001_0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RSVD								CDIV											RSVD								START
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
									W	W	W	W	W	W	W																W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:23]	R	Reserved (Not used)	0
CDIV	[22:16]	RW	CDIV[6:0] Free running timer clock divider The frequency of free running timer = LCLK/LDIV/(CDIV + 1)	0x01
RSVD	[15:1]	R	Reserved (Not used)	0
START	[0]	RW	START 0 = Free running timer stop. 1 = Free running timer start When FRT stops, FRT block is reset but FRT registers is not reset. To enter STOP mode right after writing "1", wait one CPU cycle because it takes time to start timer.	1

13.3.1.5 FRT_SR

- Base Address: 0x400A_0000
- Address = Base Address + 0x0010, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RSVD																SWRST
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:1]	R	Reserved (Not used)	0
SWRST	[0]	R	Software reset release status bit This shows the software reset is done after user writes "1" to SWRST bit in SRR (Software reset register). User should check it when using software reset. This will set to "1" during software reset. At the end of software reset, this bit will be cleared "0" automatically	0

13.3.1.6 FRT_IMSCR

- Base Address: 0x400A_0000
- Address = Base Address + 0x0014, Reset Value = 0x0000_0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														RSVD															MATCH		RSVD
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
		W	W																										W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:3]	R	Reserved (Not used)	0
МАТСН	[2]	R/W	MATCH 0 = Timer match Interrupt is disabled 1 = Timer match interrupt is enabled	0
RSVD	[1:0]	R/W	Reserved	1

13.3.1.7 FRT_RISR

- Base Address: 0x400A_0000
- Address = Base Address + 0x0018, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																													-		
														RSVD															MATCH	ļ	KSVD
														R															Ď	(r
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0	0	0	0	0	0	0	0	U	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:3]	R	Reserved (Not used)	0
МАТСН	[2]	R	MATCH 0 = Timer match Interrupt does not occur 1 = Timer match interrupt occurs (FRT_DBR = FRT_CVR)	0
RSVD	[1:0]	R	Reserved	0

NOTE: FRT_RISR does not affected by FRT_IMSCR.

13.3.1.8 FRT_ICR

- Base Address: 0x400A_0000
- Address = Base Address + 0x0020, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																													т		-
														RSVD															MATCH		KSVD
																													2		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:3]	R	Reserved (Not used)	0
МАТСН	[2]	W	MATCH 0 = No effect 1 = Timer match interrupt is cleared	0
RSVD	[1:0]	W	Reserved	0

13.3.1.9 FRT_DR

- Base Address: 0x400A_0000
- Address = Base Address + 0x0024, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															DATA																
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
DATA	[31:0]	RW	DATA for match This register is for next match. This value will be copied the DBR (Data buffer register) when the timer start bit START in CR is written as "1"	0

13.3.1.10 FRT_DBR

- Base Address: 0x400A_0000
- Address = Base Address + 0x0028, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															DRR	ź															
					1		r	r			1					1															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
DBR	[31:0]	R	DATA for match A match interrupt will occur when FRT_DBR[DATA] = FRT_CVR[COUNT]. This value will come from the DR (Data register).	0

13.3.1.11 FRT_CVR

- Base Address: 0x400A_0000
- Address = Base Address + 0x002C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															F	-															
															Ľ	,															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
COUNT	[31:0]	R	COUNT value	0

14 Serial Peripheral Interface (SPI)

14.1 Overview

The S3FN60D can support 2-ch serial peripheral interface (SPI). SPI includes two 16-bit shift registers for transmission and receiving, respectively. During SPI transfer, data is simultaneously transmitted (Shifted out serially) and received (Shifted in serially). SPI supports the protocols for Motorola Serial Peripheral Interface.

14.1.1 Features

The SPI supports the following features:

- Master or slave operation
- Programmable clock bit rate and prescale
- Separate transmit and receive first-in, first-out memory buffers, 16 bits wide, 8 locations deep
- Programmable data frame size from 4 to 16 bits
- Independent masking of transmit FIFO, receive FIFO, and receive overrun interrupts
- Internal loopback test mode available
- Support for Direct Memory Access (DMA)

14.1.2 Operation

The SPI in S3FN60D transfers 1-bit serial data between S3FN60D and external device. The SPI in S3FN60D supports the CPU or DMA to transmit or receive FIFOs separately and to transfer data in both directions simultaneously. SPI has 2 channels, TX channel and RX channel. TX channel has the path from Tx FIFO to external device. RX channel has the path from external device to RX FIFO.

SPIDR is the data register and is 16-bit wide. When SPIDR is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SPI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When SPIDR is written to, the entry in the transmit FIFO (Pointed to by the write pointer), is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the MOSI pin at the programmed bit rate.

14.1.2.1 Clock Ratio

The frequency of SPICLK equals to that of SCLK.

• FSPICLK = FSCLK

In the slave mode of operation, the SPICLKIN signal from the external master is double synchronized and then delayed to detect an edge. It takes three SPICLKs to detect an edge on SPICLKIN. SPITXD has less setup time to the falling edge of SPICLKIN on which the master is sampling the line. The setup and hold times on SPIRXD with reference to SPICLKIN must be more conservative to ensure that it is at the right value when the actual sampling occurs within the SPIMS. To ensure correct device operation, SPICLK must be at least 12 times faster than the maximum expected frequency of SPICLKIN.

The frequency selected for SPICLK must accommodate the desired range of bit clock rates. The ratio of minimum SPICLK frequency to SPICLKOUT maximum frequency in the case of the slave mode is 12 and for the master mode it is 2.

As Prime Cell SSP (PL022) specification, to generate a maximum bit rate of 1.66 Mbps in the Master mode, the frequency of SPICLK must be at least 3.32 MHz. With an SPICLK frequency of 20 MHz, the SPICPSR register has to be programmed with a value of two and the SCR[7:0] field in the SPICR0 register needs to be programmed as zero.

To work with a maximum bit rate of 1.66 Mbps in the slave mode, the frequency of SPICLK must be at least 20 MHz. With an SPICLK frequency of 20 MHz, the SPICPSR register can be programmed with a value of 12 and the SCR[7:0] field in the SPICR0 register can be programmed as zero. Similarly the ratio of SPICLK maximum frequency to SPICLKOUT minimum frequency is 254×256 .

The minimum frequency of SPICLK is governed by the following equations, both of which have to be satisfied:

FSPICLK (min.) \rightarrow 2 × FSPICLKOUT (max.) [for master mode] FSPICLK (min.) \rightarrow 12 × FSPICLKIN (max.) [for slave mode]

The maximum frequency of SPICLK is governed by the following equations, both of which have to be satisfied:

FSPICLK (max.) ← 254 × 256 × FSPICLKOUT (min.) [for master mode] FSPICLK (max.) ← 254 × 256 × FSPICLKIN (min.) [for slave mode]

14.1.2.2 Operation Mode

SPI has 2 modes, master and slave mode. In master mode, SPICLK is generated and transmitted to external device. Depending on the operating mode selected, the SSEL output operates as an active LOW slave select for SPI. SSEL must be set low before packets starts to be transmitted or received

14.1.2.2.1 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer.

When configured as a master or a slave parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master respectively, through the MOSI pin.

14.1.2.2.2 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer.

When configured as a master or slave, serial data received through the MISO pin is registered prior to parallel loading into the attached slave or master receive FIFO respectively.

14.1.2.2.3 Transmit and Receive Logic

When configured as a master, the master transmit logic successively reads a value from its transmit FIFO and performs parallel to serial conversion on it. Then the serial data stream and frame control signal, synchronized to SPICLK pin, are output through the MOSI pin to the attached slaves. The master receive logic performs serial to parallel conversion on the incoming synchronous MISO data stream, extracting and storing values into its receive FIFO.

When configured as a slave, the SPICLK pin clock is provided by an attached master and used to time its transmission and reception sequences. The slave transmit logic, under control of the master clock, successively reads a value from its transmit FIFO, performs parallel to serial conversion, then output the serial data stream and frame control signal through the slave MOSI pin. The slave receive logic performs serial to parallel conversion on the incoming MISO data stream, extracting and storing values into its receive FIFO.

14.1.2.2.4 Frame Format

Each data frame is between 4 and 16 bits long depending on the size of data programmed, and is transmitted starting with the MSB.

For all three formats, the serial clock (SPICLK pin) is held inactive while the SPI is idle, and transitions at the programmed frequency only during active transmission or reception of data. The idle state of SPICLK pin is utilized to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

For Motorola SPI, slave select signal (SSEL) pin is active LOW, and is asserted (pulled down) during the entire transmission of the frame.

SAMSUNG ELECTRONICS

14.1.2.2.5 Motorola SPI Frame Format

The Motorola SPI interface is a four-wire interface where the SSEL signal behaves as a slave select. The main feature of the Motorola SPI format is that the inactive state and phase of the SPICLK pin signal are programmable through the SPO and SPH bits within the SPISCR0 control register.

• SPO, Clock Polarity

When the SPO clock polarity control bit is LOW, it produces a steady state low value on the SPICLK pin. If the SPO clock polarity control bit is HIGH, a steady state high value is placed on the SPICLK pin when data is not being transferred.

• SPH, Clock Phase

The SPH control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge.

When the SPH phase control bit is LOW, data is captured on the first clock edge transition. If the SPH clock phase control bit is HIGH, data is captured on the second clock edge transition.

1. Motorola SPI Format with SPO = 0, SPH = 0

Single and continuous transmission signal sequences for Motorola SPI format with SPO = 0, SPH = 0 are shown in below figure.

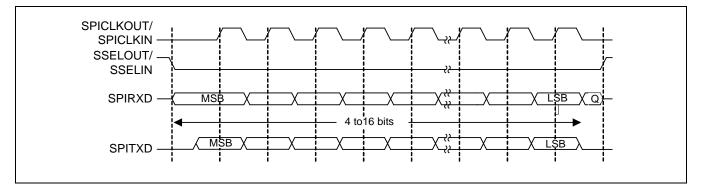
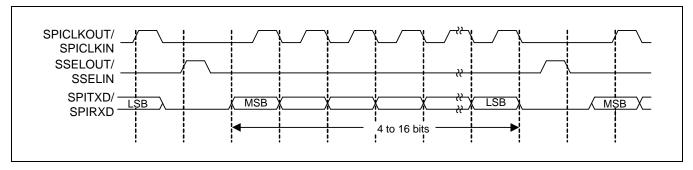



Figure 14-1 Motorola SPI Frame Format (Single Transfer) with SPO = 0 and SPH = 0

14-4

Figure 14-2 Motorola SPI Frame Format (Continuous Transfer) with SPO = 0 and SPH = 0

In this configuration, during idle periods:

- The SPICLK pin signal is forced LOW
- SSEL is forced HIGH
- The transmit data line MOSI is arbitrarily forced LOW
- When the SPI is configured as a master, the SPICLK pin is enabled
- When the SPI is configured as a slave, SPICLK pin is disabled

If the SPI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. This causes slave data to be enabled onto the MISO input line of the master.

One half SPICLK pin period later, valid master data is transferred to the MOSI pin. Now that both the master and slave data have been set, the SPICLK master clock pin goes HIGH after one further half SPICLK pin period.

The data is now captured on the rising and propagated on the falling edges of the SPICLK pin signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSEL line is returned to its idle HIGH state one SPICLK pin period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSEL signal must be pulsed HIGH between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore the master device must raise the SSEL pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSEL pin is returned to its idle state one SPICLK period after the last bit has been captured.

2. Motorola SPI Format with SPO = 0, SPH = 1

The transfer signal sequence for Motorola SPI format with SPO = 0, SPH = 1 is shown in below figure, which covers both single and continuous transfers.

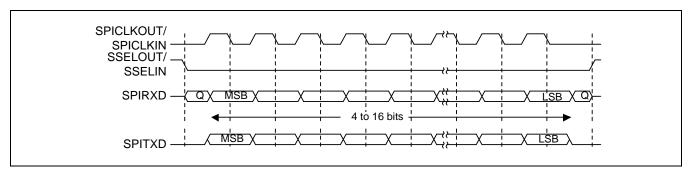


Figure 14-3 Motorola SPI Frame Format (Single Transfer) with SPO = 0 and SPH = 1

In this configuration, during idle periods:

- The SPICLK signal is forced LOW
- SSEL is forced HIGH
- The transmit data line MOSI is arbitrarily forced LOW
- When the SPI is configured as a master, the SPICLK is enabled
- When the SPI is configured as a slave the SPICLK is disabled

If the SPI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. The master MOSI output pad is enabled. After a further one half SPICLK period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SPICLK is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SPICLK signal.

In the case of a single word transfer, after all bits have been transferred, the SSEL line is returned to its idle HIGH state one SPICLK period after the last bit has been captured.

For continuous back-to-back transfers, the SSEL pin is held LOW between successive data words and termination is the same as that of the single word transfer.

3. Motorola SPI Format with SPO = 1, SPH = 0

Single and continuous transmission signal sequences for Motorola SPI format with SPO = 1, SPH = 0 are shown in below figure.

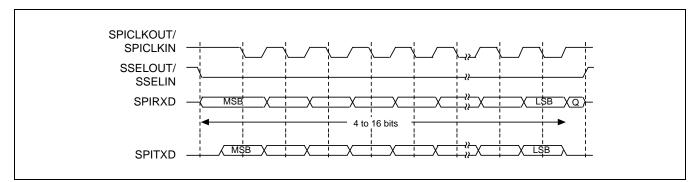


Figure 14-4 Motorola SPI Frame Format (Single Transfer) with SPO = 1 and SPH = 0

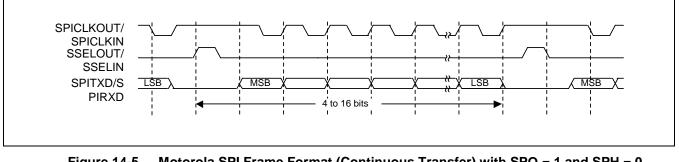


Figure 14-5 Motorola SPI Frame Format (Continuous Transfer) with SPO = 1 and SPH = 0

In this configuration, during idle periods

- The SPICLK signal is forced HIGH
- SSEL is forced HIGH
- The transmit data line MOSI is arbitrarily forced LOW
- When the SPI is configured as a master, the SPICLK is enabled
- When the SPI is configured as a slave, the SPICLK is disabled

If the SPI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW, which causes slave data to be immediately transferred onto the MISO line of the master. The master MOSI output pad is enabled.

One half period later, valid master data is transferred to the MOSI line. Now that both the master and slave data have been set, the SPICLK master clock pin becomes LOW after one further half SPICLK period. This means that data is captured on the falling edges and be propagated on the rising edges of the SPICLK signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSEL line is returned to its idle HIGH state one SPICLK period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSEL signal must be pulsed HIGH between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore the master device must raise the SSEL pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSEL pin is returned to its idle state one SPICLK period after the last bit has been captured.

4. Motorola SPI Format with SPO = 1, SPH = 1

The transfer signal sequence for Motorola SPI format with SPO = 1, SPH = 1 is shown in below figure, which covers both single and continuous transfers.

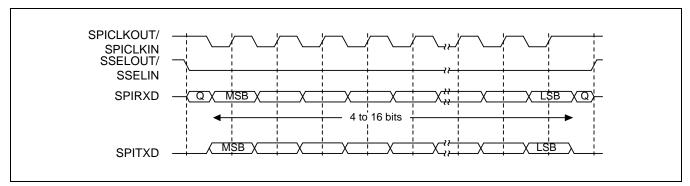


Figure 14-6 Motorola SPI Frame Format with SPO = 1 and SPH = 1

In this configuration, during idle periods:

- The SPICLK signal is forced HIGH
- SSEL is forced HIGH
- The transmit data line MOSI is arbitrarily forced LOW
- When the SPI is configured as a master, the SPICLK is enabled
- When the SPI is configured as a slave, the SPICLK is disabled

If the SPI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. The master MOSI output pad is enabled.

After a further one half SPICLK period, both master and slave data are enabled onto their respective transmission lines. At the same time, the SPICLK is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SPICLK signal.

After all bits have been transferred, in the case of a single word transmission, the SSEL line is returned to its idle HIGH state one SPICLK period after the last bit has been captured.

For continuous back-to-back transmissions, the SSEL pins remains in its active LOW state, until the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSEL pin is held LOW between successive data words and termination is the same as that of the single word transfer.

5. Examples of Master and Slave Configurations

Below figures show how the PrimeCell SSP (PL022) peripheral can be connected to other synchronous serial peripherals, when it is configured as a master or slave.

NOTE: The SSP (PL022) does not support dynamic switching between master and slave in a system. Each instance is configured and connected either as a master or slave.

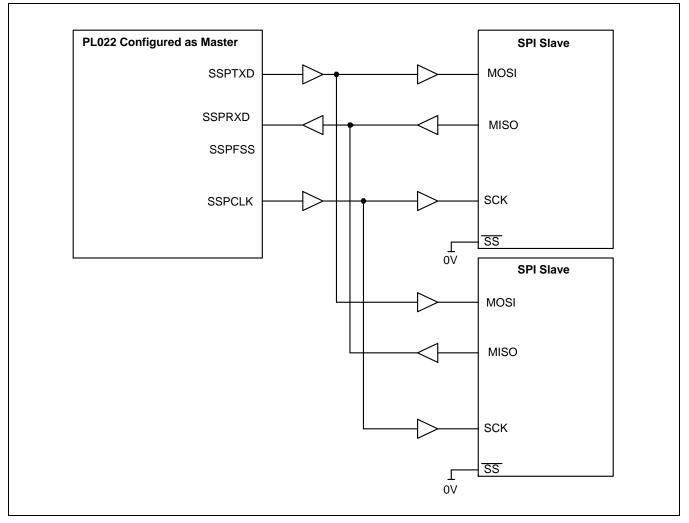


Figure 14-7 PrimeCell SSP Master Coupled To Two Slaves

Above figure shows how an PrimeCell SSP (PL022), configured as master, interfaces to two Motorola SPI slaves. Each SPI Slave Select (SS) signal is permanently tied LOW and configures them as slaves. Similar to the above operation, the master can broadcast to the two slaves through the master PrimeCell SSP SSPTXD line. In response, only one slave drives its SPI MISO port onto the SSPRXD line of the master.

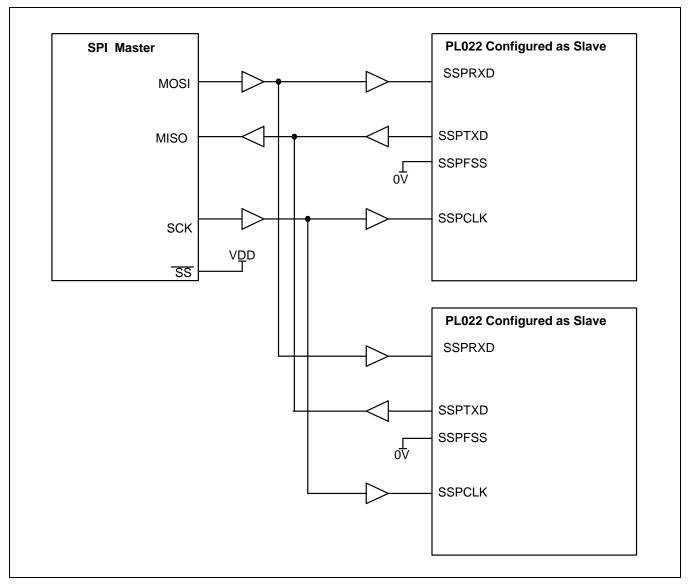


Figure 14-8 SPI Master Coupled to two PrimeCell SSP Slaves

Above figure shows a Motorola SPI configured as a master and interfaced to two instances of PrimeCell SSP (PL022) configured as slaves. In this case the slave Select Signal (SS) is permanently tied HIGH and configures it as a master. The master can broadcast to the two slaves through the master SPI MOSI line and in response, only one slave drives its nSSPOE signal LOW. This enables its SSPTXD data onto the MISO line of the master.

DMA Operation

• DMA Data Transfer:

Each Periperal IP modules (Each IP's) provide Data to MEMORY or receive Data from MEMORY via DMA module. Therefore, Each IP's send the request signal to DMA module for Data and receive acknowledgement signal after the completion of data transfer. If receive and transmit mode are selected as DMA request mode, DMA request operation occurs instead of Rx or Tx interrupt in the above situation. For transmission, Each IP's send request signal when Tx data buffers are not occupied and receives acknowledgement signal after it receives data by burst length. For reception, the data buffer is empty at first (buffer_empty flag to high). The data is received into Rx shift register and is transferred to data buffer with the internal channel_start signal. After the buffer_empty flag is set to low, Each IP's send request signal for Rx to DMA and receives acknowledgement signal after data in data buffer is read.

- General sequence of DMA setting for Each IP's are such as the following:
 - DMA Request & Setting Steps for Transmission Mode
 - Configure DMA as H/W request (Select Each IP's) and appropriate DMA operations (Source & Destination address/Transfer count/Data width, etc)
 - Configure the Each IP's as DMA mode and set DMA enable bit to high
 - Each IP's request DMA service
 - o DMA transmits data to the Each IP's
 - Each IP's transmit data to external module
 - Go to step 2 until DMA count is 0
 - Either Each IP's generate interrupt after delivering whole data by DMA and CPU can check the end of the Each IP's operation. After Reception, interrupt occurs and set DMA enable bit to low
 - DMA Request & Setting Steps for Reception Mode
 - Configure DMA as H/W Request (Select Each IP's) and appropriate DMA operations (Source & Destination address/Transfer count/Data width, etc)
 - Configure Each IP's as DMA mode and set DMA enable bit to high
 - Each IP's receives data from external module
 - The Peri IP requests DMA service
 - DMA delivers the data from the Each IP's
 - Go to step 4 until DMA count is 0
 - Either Each IP's generate interrupt after delivering whole data by DMA and CPU can check the end of the Each IP's operation. After Reception, interrupt occurs and set DMA enable bit to low

Interrupt

There are five interrupts generated by the SPI. Four of these are individual, maskable, active HIGH interrupts:

- SPIRXINTR: SPI receive FIFO service interrupt request
- SPITXINTR: SPI transmit FIFO service interrupt request
- SPIRORINTR: SPI receive overrun interrupt request
- SPIRTINTR: SPI time out interrupt request

You can mask each of the four individual maskable interrupts by setting the appropriate bits in the SPIIMSC register. Setting the appropriate mask bit HIGH enables the interrupt

Provision of the individual outputs as well as a combined interrupt output, allows use of either a global interrupt service routine, or modular device drivers to handle interrupts.

The transmit and receive dynamic dataflow interrupts SPITXINTR and SPIRXINTR have been separated from the status interrupts, so that data can be read or written in response to just the FIFO trigger levels.

The status of the individual interrupt sources can be read from SPIRIS and SPIMIS registers.

- SSPRXINTR
 - The receive interrupt is asserted when there are four or more valid entries in the receive FIFO
- SSPTXINTR
 - The transmit interrupt is asserted when there are four or less valid entries tin the transmit FIFO. The transmit interrupt SSPTXINTR is not qualified with the PrimeCell SSP enable signal, which allows operation in one of two ways. Data can be written to the transmit FIFO prior to enabling the PrimeCell SSP and interrupts

Alternatively, the PrimeCell SSP and interrupts can be enabled so that data can be written to the transmit FIFO by an interrupt service routine

- SSPRORINTR
 - The receive overrun interrupt SSPORINTR is asserted when the FIFO is already full and an additional data frame is received, causing an overrun of the FIFO. Data is over-written in the receive shift register, but not the FIFO
- SSPRTINTR
 - The receive timeout interrupt is asserted when the receive FIFO is not empty and the PrimeCell SSP has remained idle for a fixed 32 bit period. This mechanism ensures that the user is aware that data is still present in the receive FIFO and requires servicing. This interrupt is deasserted if the receive FIFO becomes empty by subsequent reads, or if new data is received on SSPRXD. It can also be cleared by writing to the RTIC bit in the SSPICR register

14.2 Register Description

14.2.1 Register Map Summary

- SPI0 Base Address: 0x400E_0000
- SPI1 Base Address: 0x400E_1000

Register	Offset	Description	Reset Value
SPI_CR0	0x0000	Control register 0	0x0000_0000
SPI_CR1	0x0004	Control register 1	0x0000_0010
SPI_DR	0x0008	Receive FIFO (read) and transmit FIFO data register (write)	0x0000_0000
SPI_SR	0x000C	Status register	0x0000_0003
SPI_CPSR	0x0010	Clock prescale register	0x0000_0000
SPI_IMSCR	0x0014	Interrupt mask set and clear register	0x0000_0000
SPI_RISR	0x0018	Raw interrupt status register	0x0000_0008
SPI_MISR	0x001C	Masked interrupt status register	0x0000_0000
SPI_ICR	0x0020	Interrupt clear register	0x0000_0000
SPI_DMACR	0x0024	DMA control register	0x0000_0000

14.2.1.1 SPI_CR0

- SPI0 Base Address: 0x400E_0000
- SPI1 Base Address: 0x400E_1000
- Address = Base Address + 0x0000, Reset Value = 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								KSVD												NCK				HdS	OdS		FRF			DSS D	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W		R W	R W												

Name	Bit	Туре	Description	Reset Value
RSVD	[31:16]	R	Reserved (Not used)	0
SCR (NOTE)	[15:8]	RW	Serial clock rate: The value SCR is used to generate the transmit and receive bit rate. The bit rate is: SCLK/(CPSDVSR \times (1 + SCR)) Where CPSDVSR is an even value from 2 to 254, programmed through the SPICPSR register and SCR is a value from 0 to 255.	0
SPH	[7]	RW	SPICLK phase 0 = Data is captured on the first clock edge transition. 1 = Data is captured on the second clock edge transition	0
SPO	[6]	RW	SPICLK polarity 0 = Low in a steady state 1 = High in a steady state	0
FRF	[5:4]	RW	Frame format: Must be set to 00 for Motorola SPI frame format	0
DSS	[3:0]	RW	Data Size Select: 0000 to 0010 = Reserved, undefined operation 0011 = 4-bit data 0100 = 5-bit data 0101 = 6-bit data 0110 = 7-bit data 0111 = 8-bit data 1000 = 9-bit data 1001 = 10-bit data 1010 = 11-bit data 1011 = 12-bit data 1100 = 13-bit data 1101 = 14-bit data	0

Name	Bit	Туре	Description	Reset Value
			1110 = 15-bit data 1111 = 16-bit data	

NOTE: When SPI operates to master mode and slave, SPICLK is limited to each Max. Clock speed. Refer to page 16-2 Clock Ratio.

14.2.1.2 SPI_CR1

- SPI0 Base Address: 0x400E_0000
- SPI1 Base Address: 0x400E_1000
- Address = Base Address + 0x0004, Reset Value = 0x0010

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												RSVD														RXIFLSEL		SOD	WS	SSE	BM
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W		R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:7]	R	Reserved (Not used)	0
RXIFLSEL	[6:4]	RW	Receive Interrupt FIFO Level Selection Field 001 = Trigger points: Receive FIFO becomes >= 1/8 010 = Trigger points: Receive FIFO becomes >= 1/4 100 = Trigger points: Receive FIFO becomes >= 1/2 Others = Reserved	1
SOD	[3]	RW	Slave-mode output disable: This bit is relevant only in the slave mode (MS = 1). In multiple-slave systems, it is possible for an SPI master to broadcast a message to all slaves in the system while ensuring that only one slave drives data onto its serial output line. In such systems the RXD lines from multiple slaves could be tied together. To operate in such systems, the SOD bit can be set if the SPI slave is not supposed to drive the MOSI line. 0 = SPI can drive the MOSI output in slave mode. 1 = SPI must not drive the MOSI output in slave mode.	0
MS	[2]	RW	Master or slave mode select 0 = Device configured as master 1 = Device configured as slave	0
SSE	[1]	RW	Synchronous serial port enable: 0 = SPI operation disabled 1 = SPI operation enabled	0
ВМ	[0]	RW	Loop back mode: 0 = Normal serial port operation enabled 1 = Output of transmit serial shifter is connected to input of receive serial shifter internally.	0

14.2.1.3 SPI_DR

- SPI0 Base Address: 0x400E_0000
- SPI1 Base Address: 0x400E_1000
- Address = Base Address + 0x0008, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								_																							
							1	RSVD															ATA A								
								L.															-	-							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																W	W	W	W	W	W	W	W	W	W	w	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:16]	R	Reserved (Not used)	0
DATA	[15:0]	RW	Transmit/Receive FIFO: Read = Receive FIFO Write = Transmit FIFO You must right-justify data when the SPI is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by transmit logic. The receive logic automatically right-justifies.	_

SPIDR is the data register and is 16-bits wide. When SPIDR is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SPI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When SPIDR is written to, the entry in the transmit FIFO (Pointed to by the write pointer), is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the MOSI pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in ther receive buffer.

14.2.1.4 SPI_SR

- SPI0 Base Address: 0x400E_0000
- SPI1 Base Address: 0x400E_1000
- Address = Base Address + 0x000C, Reset Value = 0x0000_0003

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RSVD														ΒSΥ	RFF	RNE	TNF	TFE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:5]	R	Reserved (Not used)	0
BSY	[4]	R	 SPI busy flag: 0 = SPI is idle 1 = SPI is currently transmitting and/or receiving a frame or the transmit FIFO is not empty. 	0
RFF	[3]	R	Receive FIFO Full: 0 = Receive FIFO is not full 1 = Receive is full	0
RNE	[2]	R	Receive is Not Empty: 0 = Receive FIFO is empty 1 = Receive FIFO is not empty	0
TNF	[1]	R	Transmit FIFO Full: 0 = Transmit FIFO is full 1 = Transmit FIFO is not full	1
TFE	[0]	R	Transmit FIFO Empty: 0 = Transmit FIFO is not empty 1 = Transmit FIFO is empty	1

14.2.1.5 SPI_CPSR

- SPI0 Base Address: 0x400E_0000
- SPI1 Base Address: 0x400E_1000
- Address = Base Address + 0x0010, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											ļ	٥Ņ															(NSK			
											Č	KSVD																CPSD			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	0
CPSDVSR	[7:0]	RW	Clock Prescale Divisor: Must be an even number from 2 to 254, depending on the frequency of FSPICLK. The least significant bit always returns zero on reads.	0

SPICPSR is the clock pre-scale register and specifies the division factor by which the input FSPICLK must be internally divided before further use.

The value programmed into this register must be an even number between 2 to 254. The least significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least significant bit as zero.

14.2.1.6 SPI_IMSCR

- SPI0 Base Address: 0x400E_0000
- SPI1 Base Address: 0x400E_1000
- Address = Base Address + 0x0014, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														עסעב														TXIM	RXIM	RTIM	RORIM
-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																												W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:4]	R	Reserved (Not used)	_
ТХІМ	[3]	RW	Transmit FIFO Interrupt Mask: 0 = Tx FIFO half full or less condition interrupt is masked. 1 = Tx FIFO half full or less condition interrupt is not masked.	0
RXIM	[2]	RW	Receive FIFO Interrupt Mask: 0 = Rx FIFO half full or less condition interrupt is masked. 1 = Rx FIFO half full or less condition interrupt is not masked.	0
RTIM	[1]	RW	Receive Timeout Interrupt Mask: 0 = Rx FIFO not empty and no read prior to timeout period interrupt is masked. 1 = Rx FIFO not empty and no read prior to timeout period interrupt is not masked.	0
RORIM	[0]	RW	Receive Overrun Interrupt Mask: 0 = Rx FIFO written to while full condition interrupt is masked. 1 = Rx FIFO written to while full condition interrupt is not masked.	0

On a read this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

14.2.1.7 SPI_RISR

- SPI0 Base Address: 0x400E_0000
- SPI1 Base Address: 0x400E_1000
- Address = Base Address + 0x0018, Reset Value = 0x0000_0008

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																												TXRIS	RXRIS	RTRIS	RORRIS
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:4]	R	Reserved (Not used)	0
TXRIS	[3]	R	Gives The Raw Interrupt State (Prior to masking) of the SPITXINTR interrupt	1
RXRIS	[2]	R	Gives The Raw Interrupt State (Prior to masking) of the SPIRXINTR interrupt	0
RTRIS	[1]	R	Gives The Raw Interrupt State (Prior to masking) of the SPIRTINTR interrupt	0
RORRIS	[0]	R	Gives The Raw Interrupt State (Prior to masking) of the SPIRORINTR interrupt	0

On a read this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

14.2.1.8 SPI_MISR

- SPI0 Base Address: 0x400E_0000
- SPI1 Base Address: 0x400E_1000
- Address = Base Address + 0x001C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																												TXRIS	RXRIS	RTRIS	RORRIS
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:4]	R	Reserved (Not used)	0
TXRIS	[3]	R	Gives the transmit FIFO masked interrupt state (After masking) of the SPITXINTR interrupt	0
RXRIS	[2]	R	Gives the receive FIFO masked interrupt state (After masking) of the SPIRXINTR interrupt	0
RTRIS	[1]	R	Gives the receive timeout masked interrupt state (After Masking) Of The SPIRTINTR Interrupt	0
RORRIS	[0]	R	Gives the receive over run masked interrupt status (After masking) of the SPIRORINTR interrupt	0

On a read this register gives the current masked status value of the corresponding interrupt. A write has no effect.

14.2.1.9 SPI_ICR

- SPI0 Base Address: 0x400E_0000
- SPI1 Base Address: 0x400E_1000
- Address = Base Address + 0x0020, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DCVD	2															RTIC	RORIC
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	w	w

Name	Bit	Туре	Description	Reset Value
RSVD	[31:2]	R	Reserved (Not used)	0
RTIC	[1]	W	Receive Timeout Interrupt Clear 0 = No effect 1 = Clears the SSPRTINTR interrupt	0
RORIC	[0]	W	Receive Overrun Interrupt Clear 0 = No effect 1 = Clears the SSPRORINTR interrupt	0

On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

14.2.1.10 SPI_DMACR

- SPI0 Base Address: 0x400E_0000
- SPI1 Base Address: 0x400E_1000
- Address = Base Address + 0x0024, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																														TXDMAE	RXDMAE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:2]	R	Reserved (Not used)	0
TXDMAE	[1]	RW	DMA for the transmit FIFO Enable/Disable Control Bit 0 = Disable 1 = Enable	0
RXDMAE	[0]	RW	DMA for the receive FIFO Enable/Disable Control Bit 0 = Disable 1 = Enable	0

	•	
	•	
	•	
	•	
	•	

15 UART

15.1 Overview

The UART (Universal Asynchronous Receiver and Transmitter) in S3FN60D can support one asynchronous serial I/O ports. The UART can be operated by the interrupt-based mode or a DMA request. In other words, the UART can generate an interrupt request or a DMA request to prepare the data to be sent, or to store the received data into the memory.

UART can operate in DMA-based mode. In other words, UART can generate an interrupt or a DMA request.

The functionality of UART includes the programmable baud-rate, frame format suitable for infra-red (IrDA ver. 1.0) transmit/receive, programmable number of stop bit insertion, programmable data width of 5, 6, 7 and 8-bit, and parity checking/attaching capability of received/transmitted data.

The UART has a baud-rate generator, transmitter/receiver block and their control unit as shown in <u>Figure 15-1</u>. The baud-rate generator can generate the suitable baud rate for UART by using PCLK. To generate the proper baud rate, you should configure the proper division rate of PCLK in special register in baud rate generator.

The transmitter and receiver contain data buffer register and data shifters. Data to be transmitted is first written to the transmit buffer register (UTXH) and then copied to the transmit shifter where it is shifted out by the transmit data pin (UTXD). Received data is shifted in by the receive data pin (URXD), and is copied from the shifter to the receive buffer register (URXH) when one complete data byte has been received. Controls are provided for mode selection, status monitoring, and for interrupt generation.

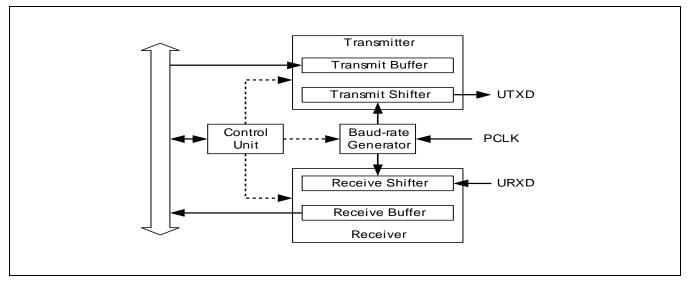


Figure 15-1 UART Block Diagram

15.2 Function Description

15.2.1 Uart Operation

The following section describe the operation of UART which include the data transmission, data reception, interrupt generation, baud-rate generation, loopback mode, infra-red mode, and so on.

15.2.2 Data Transmission

The data frame for transmission is programmable. It can have several options regarding to the data size, number of stop bit, parity checking capability, and so on, which can be specified in the Line Control Register (ULCON). Sometimes, you need to send the break condition during the sending the UART frame. The break condition can be realized by writing SBS bit in UCON registers. If you write the SBS bit in UCON register during the UART frame sending, the break condition forces the serial output to logic 0 state at least for longer time than one frame transmission after successful sending the current UART frame. This break condition will be automatically cleared after one frame of break time. The UART will send the frame data again after break time. On the receive side, if the receive controller recognize the break condition from Transmitter, there will be break interrupt to CPU.

The data transmission process is shown in <u>Figure 15-2</u>. The transmitter should transfer the data through a path as follows: data source \rightarrow transmit buffer register \rightarrow transmit shifter \rightarrow UTXD pins. Two flags (status signals) such as transmit buffer register empty and transmitter empty, are used to indicate the status of the transmit buffer register and transmitter.

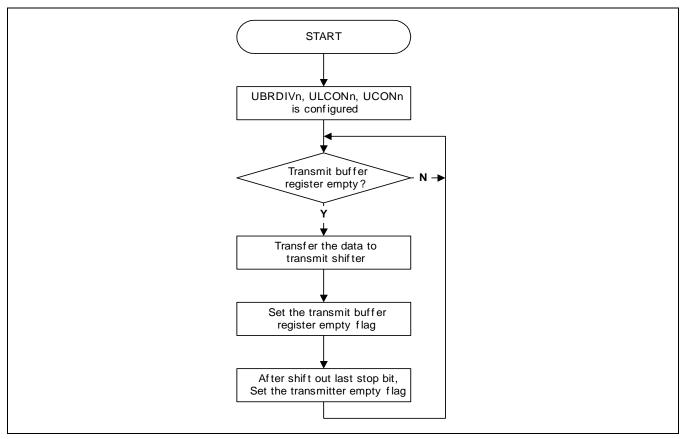


Figure 15-2 UART Data Transmission Process

15.2.3 Data Reception

The RX block of UART can also support several options necessary for UART frame receiving as similar with TX. It can support the option on data size, number of stop bit, parity checking capability, and so on, which can also be specified in the Line Control Register (ULCON). The receiver block of UART can detect the erroneous such as overrun error, parity error, frame error and break condition each of which can set an error flag.

The overrun error indicates that new data has overwritten the previously received data before the previous one has been read. The parity error indicates that the receiver has detected a parity error, which is due to different parity bit from the expectation. The frame error indicates that the received data does not have a valid stop bit in terms of frame boundary. The break condition indicates that the URXD inputs are held in the logic 0 state at least for longer time than one frame transmission.

The data reception process is shown in <u>Figure 15-3</u>. The receiver transfer data through a path as follows: URXD pin \rightarrow receive shifter register \rightarrow receive buffer register \rightarrow destination. A receive buffer full flag as well as several error flags during the reception can be used to indicate the status of the receive buffer register.

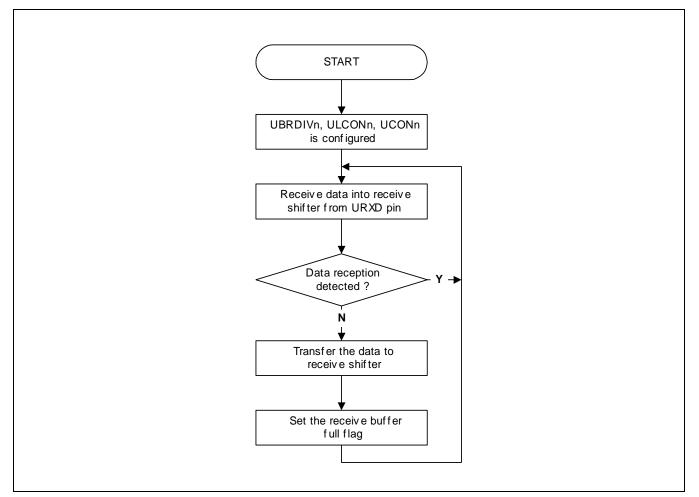


Figure 15-3 UART Data Reception Process

15.2.4 Interrupt Request Generation

The UART of S3FN60D has seven status signals: overrun error, parity error, frame error, break, receive buffer full, transmit buffer register empty and transmitter empty, which are specified in the corresponding UART status register (USTAT).

The overrun error, parity error, frame error and break condition are referred to as the receive status, each of which can cause the receive status interrupt request if the receive status interrupt enable bit is set to one in the control register (UCON). When a receive status interrupt request is detected, you can know the interrupt source by reading the content of UCON register.

When the receiver transfers the data in the receive shifter to the receive buffer register, there will be the activation of the receive buffer full status signal, which will cause the receive interrupt if the receive mode in control register is selected as the interrupt mode.

When the transmitter transfers the data in the transmit buffer register to transmit shifter, there will be the activation of the transmit buffer register empty status signal, which will cause the transmit interrupt if the transmit mode in control register is selected as the interrupt mode.

NOTE: If the receive mode in control register is selected as the interrupt mode, the receive buffer should be read-out whenever the receive buffer full status is detected (by the receive interrupt or polling RDDR in USTAT). Otherwise, the receive interrupt for the subsequent data reception will never be generated.

15.2.5 DMA Operation

• DMA Data Transfer:

Each Periperal IP modules (Each IP's) provide Data to MEMORY or receive Data from MEMORY via DMA module. Therefore, Each IP's send the request signal to DMA module for Data and receive acknowledgement signal after the completion of data transfer. If receive and transmit mode are selected as DMA request mode, DMA request operation occurs instead of Rx or Tx interrupt in the above situation. For transmission, Each IP's send request signal when Tx data buffers are not occupied and receives acknowledgement signal after it receives data by burst length. For reception, the data buffer is empty at first (buffer_empty flag to high). The data is received into Rx shift register and is transferred to data buffer with the internal channel_start signal. After the buffer_empty flag is set to low, Each IP's send request signal for Rx to DMA and receives acknowledgement signal after data in data buffer is read.

- General sequence of DMA setting for Each IP's are such as the following:
 - DMA Request & Setting Steps for Transmission Mode
 - Configure DMA as H/W request (Select Each IP's) and appropriate DMA operations (Source & Destination address/Transfer count/Data width, etc).
 - Configure the Each IP's as DMA mode and set DMA enable bit to high.
 - Each IP's request DMA service.
 - DMA transmits data to the Each IP's.
 - Each IP's transmit data to external module.
 - Go to step 2 until DMA count is 0.
 - Either Each IP's generate interrupt after delivering whole data by DMA and CPU can check the end of the Each IP's operation. After Reception, interrupt occurs and set DMA enable bit to low.
 - DMA Request & Setting Steps for Reception Mode
 - Configure DMA as H/W request (select Each IP's) and appropriate DMA operations (Source & Destination address/Transfer count/Data width, etc).
 - Configure Each IP's as DMA mode and set DMA enable bit to high
 - Each IP's receives data from external module.
 - o The Peri IP requests DMA service.
 - DMA delivers the data from the Each IP's.
 - Go to step 4 until DMA count is 0.
 - Either Each IP's generate interrupt after delivering whole data by DMA and CPU can check the end of the Each IP's operation. After Reception, interrupt occurs and set DMA enable bit to low.

15.3 Baud Rate Generation

The UART's baud-rate generator provides the serial clock for transmitter and receiver. The source clock for the baud-rate generator should be the S3FN60D's internal system clock. The baud-rate clock is generated by dividing the source clock by 16 and a 16-bit divisor specified by the UART baud-rate divisor register (UBRDIV). The UBRDIVn can be determined as follows:

```
UBRDIV = (round_off) {SCLK/(Transfer rate × 16)} - 1
```

Where the divisor should be from 1 to (216 – 1). For example, if the baud-rate is 57600bps and SCLK is 12MHz, UBRDIV is:

```
UBRDIV = (int) {SCLK/(Transfer rate × 16 ) + 0.5} - 1
= (int) {12000000/(57600 × 16 ) + 0.5} - 1 = (int) (13.02 + 0.5) - 1
= 13 - 1 = 12
```

15.3.1 Loop Back Mode

The S3FN60D UART can support a test mode, so called the loop back mode. In this mode, the transmitted data from UART Transmit module is immediately received through UART Rx module via internal connection between Transmit and Receive module. This feature allows that the processor can verify the internal transmit/receive data path of UART channel. This mode can be selected by setting the loop back bit in the UART control register (UCON).

15.3.2 Infra Red (IrDA) Mode

The UART in S3FN60D can support the frame of infra-red (IrDA) transmit and receive, which can be selected by setting the infra-red bit in the UART line control register (ULCON). As shown in *Figure 15-4*, we should have IrDA Tx Encoder and Rx Decoder, which is different from the normal UART operation mode. By using the specific Decoder/Encoder for IrDA, the signal frame in IrDA is different from the normal signal frame of UART, which is shown in *Figure 15-5*, *Figure 15-6* and *Figure 15-7*. In IrDA transmit mode, the transmitter should pulse 3/16 duty to represent a zero data as shown in *Figure 15-6*. In IrDA receive mode, the receiver should detect the 3/16 pulsed period to recognize a zero data as shown in *Figure 15-7*.

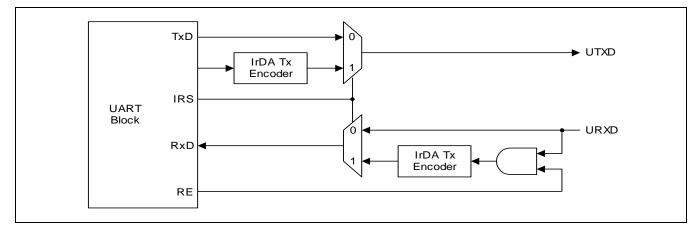


Figure 15-4 IrDA Function Block Diagram

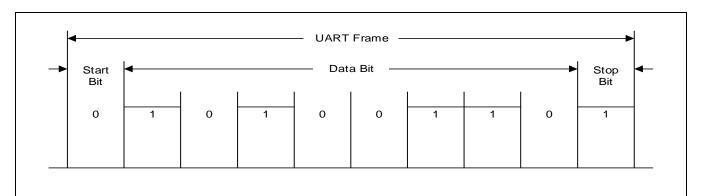


Figure 15-5 Serial I/O Frame Timing Diagram (Normal UART)

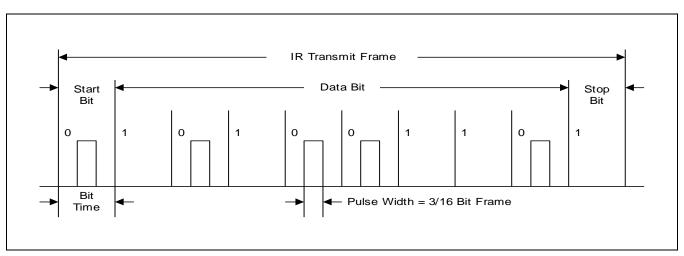


 Figure 15-6
 Infra Red (IrDA) Transmit Mode Frame Timing Diagram

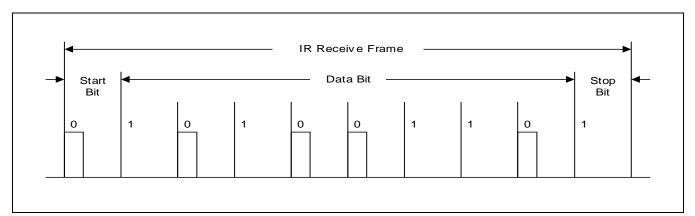


Figure 15-7 Infra Red (IrDA) Receive Mode Frame Timing Diagram

15.4 Register Description

15.4.1 Register Map Summary

Base Address: 0x400D_0000

Register	Offset	Description	Reset Value
ULCON	0x0000	UART line control register	0x0000_0000
UCON	0x0004	UART control register	0x0000_0000
USTAT	0x0008	UART status register	0x0000_00C0
UTXH	0x000C	UART transmit buffer register	0x0000_0000
URXH	0x0010	UART receive buffer register	0x0000_0000
UBRDIV	0x0014	Baud rate divisor register for UART	0x0000_0000
RSVD	0x0018	Reserved	0x0000_0000
RSVD	0x001C	Reserved	0x0000_0000
UDMACR	0x0020	DMA control register	0x0000_0000

15.4.1.1 ULCON

- Base Address: 0x400D_0000
- Address = Base Address + 0x0000, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												RSVD													NAI		PMD		BS		WL
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W		R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:7]	R	Reserved (Not used)	0
IRM	[6]	RW	Infra-Red Mode: The Infra-Red mode can determine whether or not to be use the Infra-Red mode. 0 = Normal mode operation 1 = Infre-Red Tx/Rx mode	0
PMD	[5:3]	RW	Parity Mode: The parity mode can specify the parity mode. When the parity mode is enabled, the parity generation for Tx and parity checking for Rx will be performed automatically during the Tx and Rx operation of UART. 0xx = No parity 100 = Odd parity 101 = Even parity 110 = Parity forced/checked as "1" 111 = Parity forced/checked as "0"	000
SB (NOTE)	[2]	RW	Number of Stop Bit: The number of stop bit per frame should be specified by using SB. 0 = One stop bit per frame 1 = Two stop bit per frame	0
WL	[1:0]	RW	Word Length: The word length indicates the number of data bit to be transmitted or received per frame 00 = 5-bit 01 = 6-bit 10 = 7-bit 11 = 8-bit	00

NOTE: The receiver always checks the first stop bit only.

15.4.1.2 UCON

- Base Address: 0x400D_0000
- Address = Base Address + 0x0004, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												LBM	SBS	RVSD	Ĩ	MI	RSIE		RM
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	0
LBM	[7]	RW	Loop Back Mode: Setting loop back bit to "1" can cause the UART to enter loop back mode. The Loop Back Mode means the internal connection between Tx and Rx module for test purpose. 0 = Normal operation 1 = Loopback mode	0
SBS	[6]	RW	Send Break Signal: Setting this bit can cause the UART to send a break signal. 0 = Normal transmit 1 = Send break signal	0
RVSD	[5]	RW	Reserved (Not used)	0
ТМ	[4:3]	RW	Transmit Mode: This field can determine the operation mode of UART. If the interrupt is not enabled, it is polling mode. 00 = Disable 01 = Interrupt request or polling mode 1x = Reserved	00
RSIE	[2]	RW	 Rx Status Interrupt Enable: This bit enables the UART to generate an interrupt if an exception, such as a break, frame error, parity error, or overrun error occurs during a receive operation. 0 = Do not generate receive status interrupt 1 = Generate receive status interrupt 	0
RM	[1:0]	RW	Receive Mode: This field can determine the operation mode of UART. If the interrupt is not enabled, it is polling mode. 00 = Disable 01 = Interrupt request or polling mode	00

15 UART	•
---------	---

Name	Bit	Туре	Description	Reset Value
			1x = Reserved	

NOTE: There are three interrupt requests supported by N60D UART. TX interrupt request (UARTTXINT), RX Interrupt request (UARTRXINT) and ERROR interrupt request (UARTERRINT).

- 1. When using RX Interrupt, ERROR Interrupt should be disabled. During RX ISR, check if there is any error by reading USTAT and read URXH to obtain RX data.
- 2. When using RX DMA operation, Error interrupt will be generated if error interrupt is enabled and there is any error. This error is tightly coupled with the latest data transferred by DMA. No error flag in error ISR is not shown in USTAT register because RX data is already read by DMA. And as a consequence, ERROR status in USTAT is cleared.

15.4.1.3 USTAT

- Base Address: 0x400D_0000
- Address = Base Address + 0x0008, Reset Value = 0x0000_00C0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												TSE	TBE	RDDR	RSVD	BD	EE	PE	OE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	0
TSE	[7]	R	Transmit Shift Register Empty: This bit is automatically set to "1" whenever the transmit shift register does not have a valid data for sending. 0 = Not empty 1 = Transmit buffer & shifter register empty	1
TBE	[6]	R	Transmit Buffer Register Empty: This bit is automatically set to "0" whenever the transmitter has the valid data for sending. 0 = Valid data present in the transmit buffer register 1 = Empty	1
RDDR	[5]	R	Receive Buffer Data Ready: This bit is automatically set to "1" whenever the receiver is ready to receive the data through the URXD pin. 0 = Completely empty 1 = Valid data present in the receive buffer register	0
RSVD	[4]	R	Reserved (Not used)	0
BD	[3]	R	Break Detect: This bit is automatically set to "1" to indicate that a break signal has been received. 0 = No break received 1 = Break received	0
FE	[2]	R	Frame Error: This bit is automatically set to "1" whenever an frame error occurs during the receive operation. 0 = No frame error during receive 1 = Frame error	0
PE	[1]	R	 Parity Error: This bit is automatically set to "1" whenever an parity error occurs during the receive operation. 0 = No parity error during receive 1 = Parity error 	0

Name	Bit	Туре	Description	Reset Value
OE	[0]	R	Overrun Error: This bit is automatically set to "1" whenever an overrun error occurs during the receive operation. 0 = No overrun error during receive 1 = Overrun error	0

NOTE:

1. Break signal always causes FE set and BD set. If receiver set as odd parity, PE is also set.

- 2. If there is any error, it is associated with current RX data in URXH register.
- 3. If RDR is set, URXH should be read to clear RDR (and ERROR status if any error), thereby to prevent occurring OE.

15.4.1.4 UTXH

- Base Address: 0x400D_0000
- Address = Base Address + 0x000C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											C	a															i	TA			
	RSSD																			:	TXDA										
					1					1			1	1	1				1	1						1				1	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	0
TXDATA	[7:0]	w	This field represents the data to be transmitted through TX module in UART. When you write the data in this register, the transmit buffer register empty bit (TBE) in the status register should be set to "0". This bit is for preventing the overwriting on transmitted data that may already be existed in the UTXH register. Users should update the UTXH after checking TBE bit. Whenever the UTXH is written with new value, the transmit register empty bit (TBE) will be automatically cleared to "0"	0x0

15.4.1.5 URXH

- Base Address: 0x400D_0000
- Address = Base Address + 0x0010, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												_															:	A			
											í C	KSVD																RXDAT			
											-																1	К			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	0
RXDATA	[7:0]	w	This field represents the data to be received through RX module in UART. When users read the data in this register, the receive buffer data ready bit (RBDR) in the status register should be set to "0". This bit is for preventing the reading the invalid received data in the URXH register before successful reception. You should read the URXH after checking RBDR bit. Whenever the URXH is read, the receive buffer data ready bit (RBDR) in the status register will be automatically cleared to "1"	0

15.4.1.6 UBRDIV

- Base Address: 0x400D_0000
- Address = Base Address + 0x0014, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								_															>	>							
	RSVD																							העם							
	μ μ																						-	5							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																W	W	W	W	W	W	W	W	W	W	w	w	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:16]	R	Reserved (Not used)	0
UBRDIV	[15:0]	RW	Baud rate divisor value	0

NOTE: UART can operate up to 57600 Baud Rate.

The value in the baud rate divisor register, UBRDIV, can be used to determine the UART Tx/Rx clock rate (baud rate) as follows:

```
UBRDIV = (round_off) {PCLK/(Transfer rate × 16)} - 1
```

Where the divisor should be from 1 to (216 - 1). For example, if the baud-rate is 57600 bps and PCLK is 12 MHz, UBRDIV is:

UBRDIV = (int) {PCLK/(Transfer rate × 16) + 0.5} - 1 = (int) {12000000/(57600 × 16) + 0.5} - 1 = (int) (13.02 + 0.5) - 1 = 13 - 1 = 12

PCLK	UBRDIV[15:0]	Baud Rate[bps]
4	17	14400
4	13	19200
	34	14400
8	26	19200
o	13	38400
	8	57600
	52	14400
10	39	19200
12	19	38400
	13	57600
	52	19200
16	26	38400
	17	57600
	65	19200
20	32	38400
	21	57600

Table 15-1 Baud Rate Table

15.4.1.7 UDMACR

- Base Address: 0x400D_0000
- Address = Base Address + 0x0020, Reset Value = 0X0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																														UTXDMAE	URXDMAE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																														W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:2]	R	Reserved (Not used)	0
UTXDMAE	[1]	RW	DMA for the transmit Enable/Disable Control Bit 0 = Disable 1 = Enable	0
URXDMAE	[0]	RW	DMA for the receive Enable/Disable Control Bit 0 = Disable 1 = Enable	0

	•	
	•	
	•	
	•	

16 Inter-Integrated Circuit (IIC)

16.1 Overview

The I2C (Inter-Integrated Circuit) bus is a two-wire synchronous serial interface consisting of one data (SDA) and one clock (SCL). Each device connected to the bus is software addressable by a unique address and simple relationships exist at all times. The lines SDA and SCL are bi-directional lines connected to a positive supply voltage via a pull-up resistor. The output stages of devices connected to the bus must have an open-drain in order to perform the wired-AND function.

It is a true multi-master bus including collision detection and arbitration to prevent data corruption if two or more masters simultaneously initiate data transfer. Clock synchronization is performed using the wired-AND connection of I2C interfaces to the SCL lines.

The I2C interface can operate in fast mode or in normal mode. This allows baud rates from 0 to 400 Kbit/s (Fast mode) or from 0 to 100 Kbit/s (Normal mode). The device supports four modes: Master Transmitter, Master Receiver, Slave Transmitter, Slave Receiver. The device allows 7 bits addressing or 10 bits addressing and detection of its own address and General Call address (Slave mode).

16.1.1 Features

The following is the distinctive features that are described in detail in this user's manual:

- Only two bus lines are required; a serial data line (SDA) and a serial clock line (SCL). The simple 2-wire serial I2C-bus minimizes interconnections so ICs have fewer pins
- Each device connected to the bus is software addressable by a unique address and simple master/slave relationships exist at all times. Master can operate as master-transmitter or as master-receiver
- It is a true multi-master bus including collision detection and arbitration to prevent data corruption if two or more masters simultaneously initiate data transfer
- Serial, 8-bit oriented, bi-directional data transfers can be made at up to 100 Kbit/s in the Standard-mode, up to 400 Kbit/s in the Fast-mode. Data transfer speed is depending on bus capacitance and pull-up resister
- The number of ICs that can be connected to the same bus is limited only by a maximum bus capacitance of 400 pF
- · Repeated START and early termination function are not support
- Every operation command used in I2C-bus needs delays of minimum 3 Cycles (SCLK) between them

16.1.2 Pin Description

Pin Name	Function	I/О Туре	Active Level	Comments
SDA	Serial data line	I/O	Н	-
SCL	Serial clock line	I/O	Н	-

Table 16-1 S3FN60D Pin Description

16.2 Functional Description

16.2.1 Block Diagram

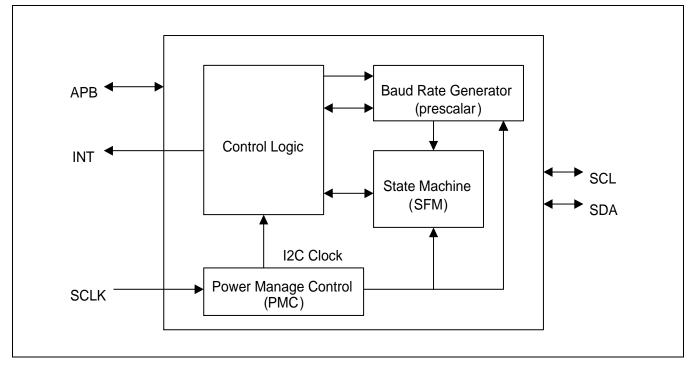


Figure 16-1 Block Diagram

16.2.2 Functional Operation

16.2.2.1 I2C Bus Concept

16.2.2.1.1 General Description

Two wires, serial data (SDA) and serial clock (SCL), carry information between the devices connected to the bus. Each device is recognized by a unique address-whether it's a microcontroller, LCD driver, memory or keyboard interface-and can operate as either a transmitter or receiver, depending on the function of the device. Obviously an LCD driver is only a receiver, whereas a memory can both receive and transmit data. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers. A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave.

The I2C bus is a multi-master bus. This means that more than one device capable of controlling the bus can be connected to it. As masters are usually micro-controllers, let's consider the case of a data transfer between two microcontrollers connected to the I2C bus. This highlights the master-slave and receiver-transmitter relationships to be found on the I2C bus. It should be noted that these relationships are not permanent, but only depend on the direction of data transfer at that time. The transfer of data would proceed as follows:

- Suppose microcontroller A wants to send information to microcontroller B
 - Microcontroller A (master) addresses microcontroller B (slave)
 - Microcontroller A (master-transmitter) sends data to microcontroller B (slave)
 - Microcontroller A terminates the transfer
- If microcontroller A wants to receive information from microcontroller B
 - Microcontroller A (master) addresses microcontroller B (slave)
 - Microcontroller A (master-receiver) receives data from microcontroller B (slave-transmitter)
 - Microcontroller A terminates the transfer

Even in this case, the master (microcontroller A) generates the timing and terminates the transfer.

The possibility of connecting more than one microcontroller to the I2C bus means that more than one master could try to initiate a data transfer at the same time. To avoid the chaos that might ensue from such an event-an arbitration procedure has been developed. This procedure relies on the wired-AND connection of all I2C interfaces to the I2C bus.

If two or more masters try to put information onto the bus, the first to produce a "one" when the other produces a "zero" will lose the arbitration. The clock signals during arbitration are a synchronized combination of the clocks generated by the masters using the wired-AND connection to the SCL.

Generation of clock signals on the I2C bus is always the responsibility of master devices; each master generates its own clock signals when transferring data on the bus. Bus clock signals from a master can only be altered when they are stretched by a slow-slave device holding-down the clock line or by another master when arbitration occurs.

16.2.2.1.2 General Characteristics

Both SDA and SCL are bi-directional lines, connected to a positive supply voltage via a pull-up. When the bus is free, both lines are HIGH. The output stages of devices connected to the bus must have an open-drain in order to perform the wired-AND function. Data on the I2C bus can be transferred at a rate up to 100 Kbit/s in the standard mode, or up to 400 Kbit/s in the fast mode. The number of interfaces connected to the bus is solely dependent on the bus capacitance limit of 400 pF.

The table below shows some examples of configuration for some pre-defined baud rates, depending on the I2C clock, FAST mode and PRV field (in I2C_MR register):

I2C Clock	PRV	Baud Rate	FAST	% Error
	777	96000	0	- 0.03 %
75	596	125000	1	0.00 %
75 —	387	192000	1	0.10 %
	191	384000	1	- 0.16 %
	746	96000	0	0.00 %
70	572	125000	1	0.00 %
72 -	371	192000	1	0.00 %
	184	384000	1	0.27 %
	621	96000	0	0.00 %
<u></u>	476	125000	1	0.00 %
60	309	192000	1	0.16 %
	152	384000	1	- 0.16 %
	517	96000	0	0.03 %
50	396	125000	1	0.00 %
50	256	192000	1	- 0.16 %
	126	384000	1	- 0.16 %
	413	96000	0	0.08 %
40	316	125000	1	0.00 %
40	204	192000	1	- 0.16 %
	100	384000	1	- 0.16 %
	371	96000	0	0.00 %
	284	125000	1	0.00 %
36	184	192000	1	0.27 %
	90	384000	1	0.27 %
	309	96000	0	0.16 %
20	236	125000	1	0.00 %
30	152	192000	1	- 0.16 %
	74	384000	1	- 0.16 %

 Table 16-2
 Examples of Baud Rate Configuration

I2C Clock	PRV	Baud Rate	FAST	% Error
	204	96000	0	– 0.16 %
20	156	125000	1	0.00 %
20	100	192000	1	– 0.16 %
	48	384000	1	- 0.16 %
	184	96000	0	0.27 %
40	140	125000	1	0.00 %
18	90	192000	1	0.27 %
	43	384000	1	0.27 %
	387	96000	0	0.10 %
07 F	296	125000	1	0.00 %
37.5	191	192000	1	– 0.16 %
	94	384000	1	0.35 %
	191	96000	0	– 0.16 %
10 75	146	125000	1	0.00 %
18.75	94	192000	1	0.35 %
	45	384000	1	0.35 %
	100	96000	0	– 0.16 %
10	76	125000	1	0.00 %
10	48	192000	1	- 0.16 %
	22	384000	1	- 0.16 %
	94	96000	0	0.35 %
9.375	71	125000	1	0.00 %
	45	192000	1	0.35 %
4.6875	45	96000	0	0.35 %

16.2.2.2 Bit Transfer

Due to the variety of different technology devices (CMOS, NMOS, bipolar) which can be connected to the I2C bus, the levels of the logical "0" (Low) and "1" (High) are not fixed and depend on the associated level of VDD. One clock pulse is generated for each data bit transferred.

16.2.2.2.1 Data Validity

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.

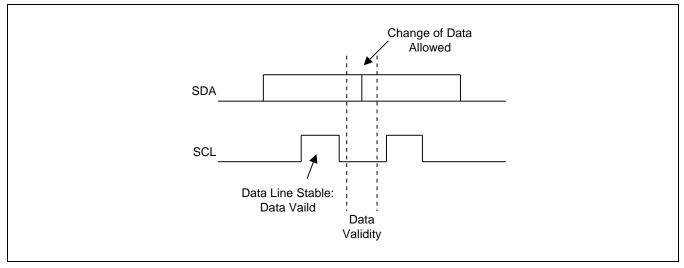


Figure 16-2 Data Validity

16.2.2.2.2 START and STOP Conditions

Within the procedure of the I2C bus, unique situations arise which are defined as START and STOP conditions. A HIGH to LOW transition on the SDA line while SCL is HIGH is one such unique case. This situation indicates a START condition.

A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition. START and STOP conditions are always generated by the master.

The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition.

Detection of START and STOP conditions by devices connected to the bus is easy if they incorporate the necessary interfacing hardware. However, microcontrollers with no such interface have to sample the SDA line at least twice per clock period in order to sense the transition.

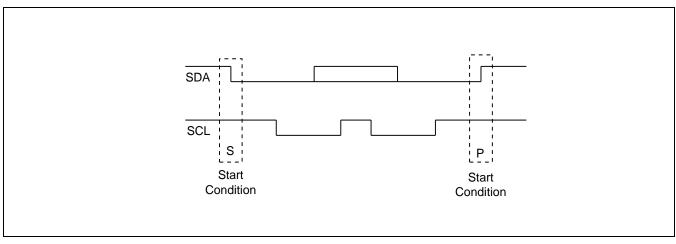


Figure 16-3 Start and Stop Conditions

16.2.2.3 Transferring Data

16.2.2.3.1 Byte Format

Every byte put on the SDA line must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a receiver can't receive another complete byte of data until it has performed some other function, for example servicing an internal interrupt, it can hold the clock line SCL LOW to force the transmitter into a wait state. Data transfer then continues when the receiver is ready for another byte of data and releases clock line SCL.

In some cases, it's permitted to use a different format from the I2C-bus format (for CBUS compatible devices for example). A message which starts with such an address can be terminated by generation of a STOP condition, even during the transmission of a byte. In this case, no acknowledge is generated.

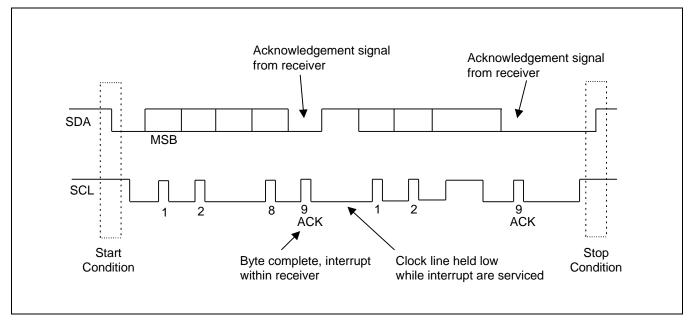


Figure 16-4 Data Transfer on the I2C Bus

16.2.2.3.2 Acknowledge

Data transfer with acknowledge is mandatory. The acknowledge-related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse.

The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. Of course, set-up and hold times must also be taken into account.

Usually, a receiver which has been addressed is obliged to generate an acknowledge after each byte has been received, except when the message starts with a CBUS address.

When a slave-receiver doesn't acknowledge the slave address (for example, it's unable to receive because it's performing some real-time function), the data line must be left HIGH by the slave. The master can then generate a STOP condition to abort the transfer.

If a slave-receiver does acknowledge the slave address but, sometime later in the transfer cannot receive any more data bytes, the master must again abort the transfer. This is indicated by the slave generating the not acknowledge on the first byte to follow. The slave leaves the data line HIGH and the master generates the STOP condition.

If a master-receiver is involved in a transfer, it must signal the end of data to the slave-transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave-transmitter must release the data line to allow the master to generate a STOP or repeated START condition.

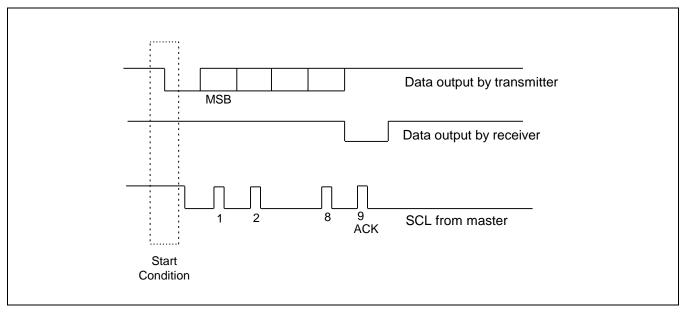


Figure 16-5 Acknowledge

16.2.2.4 Arbitration on Clock Generation

16.2.2.4.1 Synchronization

All masters generate their own clock on the SCL line to transfer messages on the I2C-bus. Data is only valid during the HIGH period of the clock. A defined clock is therefore needed for the bit-by-bit arbitration procedure to take place.

Clock synchronization is performed using the wired-AND connection of I2C interfaces to the SCL line. This means that a HIGH to LOW transition on the SCL line will cause the devices concerned to start counting off their LOW period and, once a device clock has gone LOW, it will hold the SCL line in that state until the clock HIGH state is reached. However, the LOW to HIGH transition of this clock may not change the state of the SCL line if another clock is still within its LOW period. The SCL line will therefore be held LOW by the device with the longest LOW period. Devices with shorter LOW periods enter a HIGH wait-state during this time. When all devices concerned have counted off their LOW period, the clock line will be released and go HIGH. There will then be no difference between the device clocks and the state of the SCL line, and all the devices will start counting their HIGH periods. The first device to complete its HIGH period will again pull the SCL line LOW.

In this way, a synchronized SCL clock is generated with its LOW period determined by the device with the longest clock LOW period, and its HIGH period determined by the one with the shortest clock HIGH period.

16.2.2.4.2 Arbitration

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition within the minimum hold time (THD; STA) of the START condition which results in a defined START condition to the bus.

Arbitration takes place on the SDA line, while the SCL line is at the HIGH level, in such a way that the master which transmits a HIGH level, while another master is transmitting a LOW level will switch off its DATA output stage because the level on the bus doesn't correspond to its own level.

Arbitration can continue for many bits. Its first stage is comparison of the address bits. If the masters are each trying to address the same device, arbitration continues with comparison of the data. Because address and data information on the I2C-bus is used for arbitration, no information is lost during this process.

A master which loses the arbitration can generate clock pulses until the end of the byte in which it loses the arbitration.

If a master also incorporates a slave function and it loses arbitration during the addressing stage, it's possible that the winning master is trying to address it. The losing master must therefore switch over immediately to its slave-receiver mode.

Since control of the I2C-bus is decided solely on the address and data sent by competing masters, there is no central master, nor any order of priority on the bus.

Special attention must be paid if, during a serial transfer, the arbitration procedure is still in progress at the moment when a repeated START condition or a STOP condition is transmitted to the I2C-bus. If it's possible for such a situation to occur, the masters involved must send this repeated START condition or STOP condition at the same position in the format frame. In other words, arbitration isn't allowed between:

- A repeated START condition and a data bit
- A STOP condition and a data bit
- A repeated START condition and a STOP condition.

16.2.2.4.3 Use of the Clock Synchronizing Mechanism as a Handshake

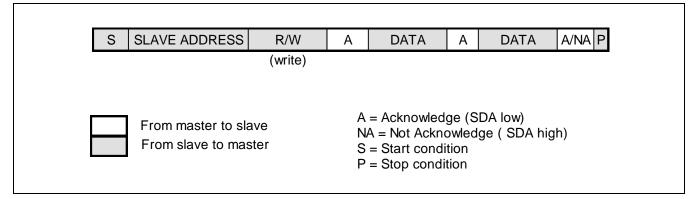
In addition to being used during the arbitration procedure, the clock synchronization mechanism can be used to enable receivers to cope with fast data transfers, on either a byte level or a bit level.

On the byte level, a device may be able to receive bytes of data at a fast rate, but needs more time to store a received byte or prepare another byte to be transmitted. Slaves can then hold the SCL line LOW after reception and acknowledgement of a byte to force the master into a wait state until the slave is ready for the next byte transfer in a type of handshake procedure.

On the bit level, a device such as a microcontroller without, or with only a limited hardware I2C interface on-chip can slow down the bus clock by extending each clock LOW period. The speed of any master is thereby adapted to the internal operating rate of this device.

16.2.2.4.4 Formats with 7-bits Addresses

After the START condition (S), a slave address is sent. This address is 7 bits long followed by an eighth bit which is a data direction bit (R/W)-a "zero" indicates a transmission (WRITE), a "one" indicates a request for data (READ). A data transfer is always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated START condition (Sr) and address another slave without first generating a STOP condition. Various combinations of read/write formats are then possible within such a transfer.


Possible data transfer formats are:

- Master-transmitter transmits to slave-receiver. The transfer direction is not changed
- Master reads slave immediately after first byte.

At the moment of the first acknowledge, the master-transmitter becomes a master-receiver and the slave-receiver becomes a slave-transmitter. This acknowledge is still generated by the slave.

The STOP condition is generated by the master.

• Combined formats. During a change of direction within a transfer, the START condition and the slave address are both repeated, but with the R/W bit reversed. If a master receiver sends a repeated START condition, it has previously sent a not acknowledge (A).

16.2.2.5 7-Bits Addressing

The addressing procedure for the I2C-bus is such that the first byte after the START condition usually determines which slave will be selected by the master. The exception is the "general call" address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge. However, devices can be made to ignore this address. The second byte of the general call address then defines the action to be taken.

16.2.2.5.1 Definition of Bits in the First Byte

The first seven bits of the first byte make up the slave address. The eighth bit is the LSB (least significant bit). It determines the direction of the message. A "zero" in the least significant position of the first byte means that the master will write information to a selected slave. A "one" in this position means that the master will read information from the slave.

When an address is sent, each device in a system compares the first seven bits after the START condition with its address. If they match, the device considers itself addressed by the master as a slave-receiver or slave-transmitter, depending on the R/W bit.

A slave address can be made-up of a fixed and a programmable part. Since it's likely that there will be several identical devices in a system, the programmable part of the slave address enables the maximum possible number of such devices to be connected to the I2C-bus. The number of programmable address bits of a device depends on the number of pins available. For example, if a device has 4 fixed and 3 programmable address bits, a total of 8 identical devices can be connected to the same bus.

The I2C-bus committee coordinates allocation of I2C addresses.

Two groups of eight addresses (0000XXX and 1111XXX) are reserved for the purposes shown in <u>Table 16-1</u>. The bit combination 11110XX of the slave address is reserved for 10-bit addressing.

Slave Address	RNW bit	Description
0000 000	0	General call address
0000 000	1	START byte ⁽¹⁾
0000 001	Х	CBUS address ⁽²⁾
0000 010	Х	Reserved for different bus format ⁽³⁾
0000 011	Х	Reserved for future purposes
0000 1XX	Х	HS-mode master code
1111 1XX	Х	Reserved for future purposes
1111 0XX	Х	10-bit slave addressing (S3FN60D is not supported)

Table 16-3Definition of Bytes in First Byte

NOTE:

1. No device is allowed to acknowledge at the reception of the START byte.

- 2. The CBUS address has been reserved to enable the inter-mixing of CBUS compatible and I2C -bus compatible devices in the same system. I2C -bus compatible devices are not allowed to respond on reception of this address.
- 3. The address reserved for a different bus format is included to enable I2C and other protocols to be mixed. Only I2C -bus compatible devices that can work with such formats and protocols are allowed to respond to this address.

The general call address is for addressing every device connected to the I2C-bus. However, if a device doesn't need any of the data supplied within the general call structure, it can ignore this address by not issuing an acknowledgement. If a device does require data from a general call address, it will acknowledge this address and behave as a slave-receiver.

The second and following bytes will be acknowledged by every slave-receiver capable of handling this data.

A slave which cannot process one of these bytes must ignore it by not acknowledging. The meaning of the general call address is always specified in the second byte.

There are two cases to consider:

- When the least significant bit B is a "zero"
- When the least significant bit B is a "one".

When bit B is a "zero"; the second byte has the following definition:

- 00000110 (H "06"). Reset and write programmable part of slave address by hardware. On receiving this 2byte sequence, all devices designed to respond to the general call address will reset and take in the programmable part of their address. Precautions have to be taken to ensure that a device is not pulling down the SDA or SCL line after applying the supply voltage, since these low levels would block the bus.
- 00000100 (H "04"). Write programmable part of slave address by hardware. All devices which define the
 programmable part of their address by hardware (and which respond to the general call address) will latch this
 programmable part at the reception of this two byte sequence. The device will not reset.
- 00000000 (H "00"). This code is not allowed to be used as the second byte.

The remaining codes have not been fixed and devices must ignore them.

When bit B is a "one"; the 2-byte sequence is a "hardware general call". This means that the sequence is transmitted by a hardware master device, such as a keyboard scanner, which cannot be programmed to transmit a desired slave address. Since a hardware master doesn't know in advance to which device the message has to be transferred, it can only generate this hardware general call and its own address-identifying itself to the system.

The seven bits remaining in the second byte contain the address of the hardware master. This address is recognized by an intelligent device (e.g. a microcontroller) connected to the bus which will then direct the information from the hardware master. If the hardware master can also act as a slave, the slave address is identical to the master address.

In some systems, an alternative could be that the hardware master transmitter is set in the slave-receiver mode after the system reset.

In this way, a system configuring master can tell the hardware master-transmitter (which is now in slave-receiver mode) to which address data must be sent. After this programming procedure, the hardware master remains in the master-transmitter mode.

16.2.2.5.2 Start Byte

Microcontrollers can be connected to the I2C-bus in two ways. A microcontroller with an on-chip hardware I2C-bus interface can be programmed to be only interrupted by requests from the bus. When the device doesn't have such an interface, it must constantly monitor the bus via software. Obviously, the more times the microcontroller monitors, or polls the bus, the less time it can spend carrying out its intended function. There is therefore a speed difference between fast hardware devices and a relatively slow microcontroller which relies on software polling.

In this case, data transfer can be preceded by a start procedure which is much longer than normal.

The start procedure consists of:

- A START condition (S)
- A START byte (0000001)
- An acknowledge clock pulse (ACK)
- A repeated START condition (Sr).

After the START condition S has been transmitted by a master which requires bus access, the START byte (00000001) is transmitted. Another microcontroller can therefore sample the SDA line at a low sampling rate until one of the seven zeros in the START byte is detected. After detection of this LOW level on the SDA line, the microcontroller can switch to a higher sampling rate to find the repeated START condition Sr which is then used for synchronization.

A hardware receiver will reset on receipt of the repeated START condition Sr and will therefore ignore the START byte.

An acknowledge-related clock pulse is generated after the START byte. This is present only to conform with the byte handling format used on the bus. No device is allowed to acknowledge the START byte.

16.2.3 Extensions to the I2C-bus Specification

The I2C-bus with a data transfer rate of up to 100 Kbit/s and 7-bit addressing has now been in existence for more than ten years with an unchanged specification. The concept is accepted world-wide as a de facto standard and hundreds of different types of I2C-bus compatible ICs are available. The I2C-bus specification is now extended with the following two features:

A fast-mode which allows a fourfold increase of the bit rate to 0 to 400 Kbit/s

There is a reason for this extension to the I2C-bus specification:

New applications will need to transfer a larger amount of serial data and will therefore demand a higher bit rate than 100 Kbit/s. Improved IC manufacturing technology now allows a fourfold speed increase without increasing the manufacturing cost of the interface circuitry.

All new devices with an I2C-bus interface are provided with the fast-mode. Preferably, they should be able to receive and/or transmit at 400 Kbit/s. The minimum requirement is that they can synchronize with a 400 Kbit/s transfer; they can then prolong the LOW period of the SCL signal to slow down the transfer. Fast-mode devices must be downward-compatible which means that they must still be able to communicate with 0 to 100 Kbit/s devices in a 0 to 100 Kbit/s I2C-bus system.

Obviously, devices with a 0 to 100 Kbit/s I2C-bus interface cannot be incorporated in a fast-mode I2C-bus system because, since they cannot follow the higher transfer rate, unpredictable states of these devices would occur.

16.2.4 Fast Mode

In the fast-mode of the I2C-bus, the protocol, format, logic levels and maximum capacitive load for the SDA and SCL lines quoted in the previous I2C-bus specification are unchanged. Changes to the previous I2C-bus specification are:

- The maximum bit rate is increased to 400 Kbit/s
- Timing of the serial data (SDA) and serial clock (SCL) signals has been adapted. There is no need for • compatibility with other bus systems such as CBUS because they cannot operate at the increased bit rate.
- The inputs of fast-mode devices must incorporate spike suppression and a Schmitt trigger at the SDA and • SCL inputs.
- The output buffers of fast-mode devices must incorporate slope control of the falling edges of the SDA and SCL signals.
- If the power supply to a fast-mode device is switched off, the SDA and SCL I/O pins must be floating so that • they don't obstruct the bus lines.
- The external pull-up devices connected to the bus lines must be adapted to accommodate the shorter maximum permissible rise time for the fast-mode I2C-bus. For bus loads up to 200 pF, the pull-up device for each bus line can be a resistor; for bus loads between 200 pF and 400 pF, the pull-up device can be a current source (3 mA Max.) or a switched resistor.

16.3 Inter-Intergrated Circuit Timing

		ing Requi				-
Parameter	Symbol	Standar I2C	d-mode Bus	Fast-m I2C B		Unit
		Min.	Max.	Min.	Max.	
SCL clock frequency	FSCL	0	100	0	400	kHz
Bus free time between a STOP and START condition	TBUF	4.7	Ι	1.3	_	μS
Hold time (repeated) START condition. After this period, the first clock pulse is generated	THD; STA	4.0	-	0.6	-	μs
Low period of the SCL clock	TLOW	4.7	Ι	1.3	-	μS
High period of the SCL clock	THIGH	4.0	I	0.6	_	μS
Set-up time for a repeated START condition	TSU; STA	4.7	_	0.6	_	μS
Data hold time	THD; DAT	0	Ι	0	0.9	μS
Data set-up time	TSU; DAT	250	-	100	-	ns
Rise time for both SDA and SCL signals	Tr	-	1000	20 + 01 Cb	300	ns
Fall time for both SDA and SCL signals	Tf	_	300	20 + 01 Cb	300	ns
Set-up time for STOP condition	TSU; STO	4.0	-	0.6	_	μS
Capacitive load for each bus line	Cb	-	400	_	400	pF

Table 16-4 Timing Requirements

16.4 Register Description

16.4.1 Register Map Summary

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000

Register	Offset	Description	Reset Value
I2C_IDR	0x0000	ID register	0x0001_000E
I2C_CEDR	0x0004	Clock enable/Disable register	0x0000_0000
I2C_SRR	0x0008	Software reset register	0x0000_0000
I2C_CR	0x000C	Control register	0x0000_0000
I2C_MR	0x0010	Mode register	0x0000_01F4
I2C_SR	0x0014	Status register	0x0000_00F8
I2C_IMSCR	0x0018	Interrupt mask set/Clear register	0x0000_0000
I2C_RISR	0x001C	Raw interrupt status register	0x0000_0000
I2C_MISR	0x0020	Masked interrupt status register	0x0000_0000
I2C_ICR	0x0024	Interrupt clear register	0x0000_0000
I2C_SDR	0x0028	Serial data register	0x0000_0000
I2C_SSAR	0x002C	Serial slave address register	0x0000_0000
I2C_HSDR	0x0030	Hold/setup delay register	0x0000_0001
I2C_DMACR	0x0034	DMA control register	0x0000_0000

16.4.1.1 I2C_IDR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x0000, Reset Value = 0x0001_000E

31	30	D	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RSVU															INCORE													
0	0)	0	0	0	0																										
R	R	ł	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:26]	R	Reserved (Not used)	0
IDCODE	[25:0]	R	Identification Code Register This field stores the ID code for the corresponding IP. The value is 0x0001000E.	0x0001_000E

16.4.1.2 I2C_CEDR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x0004, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RSVD																CKEN
															RS																Сĸ
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																															W

Name	Bit	Туре	Description	Reset Value
RSVD	[30:1]	R	Reserved (Not used)	0
CKEN	[0]	RW	I2C Clock Enable 0 = Disable the I2C clock 1 = Enables the I2C clock.	0

16.4.1.3 I2C_SRR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000

• Address = Base Address + 0x0008, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RSVD																RST
															RS																SWRS ⁻
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:1]	R	Reserved (Not used)	0
SWRST	[0]	W	Software reset 0 = No effect 1 = Perform software reset	0

16.4.1.4 I2C_CR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x000C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											RSVD												ENA			RSVD		STA	STO	AA	RSVD
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R	R	R	R	R W	R W	R W	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:9]	R	Reserved (Not used)	0
ENA	[8]	RW	I2C enable 0 = Disables the I2C Interface (When the I2C interface is disabled, the SCL and SDA lines are disabled. No output is generated and no input is taken account). 1 = Enables the I2C Interface	0
RSVD	[7:4]	R	Reserved (Not used)	0
STA	[3]	RW	I2C start 0 = Set to "0" put the Interface in slave mode. 1 = When set to "1", the interface enters in master mode, check the status of the I2C bus and generates a START condition if the bus is free. If the bus is not free, the Interface will wait until a STOP condition to generate a START condition (after a minimum time). Set to "0" put the Interface in slave mode.	0
STO	[2]	RW	 I2C stop. 0 = Clear not to send a STOP condition on the bus. 1 = Generates a stop condition. When the STOP condition is detected on bus, the STO bit is automatically cleared. In slave mode, this bit is used to recover from a bus error. In such case, no STOP condition is transmitted, but the interface do as if a STOP condition has been received and switch to the "not addressed" slave mode (the STO bit is cleared by the interface). 	0
АА	[1]	RW	 I2C acknowledge. 0 = No acknowledge is returned (SDA remains high during the acknowledge SCL clock pulses). 1 = Acknowledge is returned when the "own slave address" is received (or the general call address has 	0

Name	Bit	Туре	Description	Reset Value
			been received while bit GC of I2C_ADR is set) or when a data byte has been received while being in the receiver mode.	
RSVD	[0]	R	Reserved (Not used)	0

16.4.1.5 I2C_MR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x0010, Reset Value = 0x0000_01F4

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									RSVD										FAST							РКV					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W		R W							

Name	Bit	Туре	Description	Reset Value
RSVD	[31:13]	R	Reserved (Not used)	0
FAST	[12]	RW	Fast mode 0 = Disables FAST mode. Enables STANDARD mode. In this mode the high to low ratio is 1:1 and the maximum baud rate is 100 kHz. 1 = Enables FAST mode. In this mode the high to low ratio is 2:3 and the maximum baud rate is 400 kHz.	0
PRV	[11:0]	RW	Pre-scalar value These bits select the speed of the bus (FSCL). The value of PRV (pre-scaler Value) is used to generate the FSCL with the formula: FSCL = SCLK/(PRV + 4)	0001_1111_0100

PRV	FAST			SCLK (MHz)		
(Decimal)	FASI	10	20	25	40	50
500	0	19.8	39.7	49.6	80	99.2
400	0	24.7	49.5	61.8	99	—
250	0	39.3	78.7	98.4	_	-
200	0	49	98	-	-	-
125	0	77.5	_	_	_	-
125	1	77.5	155	194	310	387
100	1	96	192	240	400	-
62.5	1	150	300	375	_	-
50	1	185	370	_	_	-
25	1	344	_	_	_	-

Table 16-5 Values of FSCL in kHz Depending of PRV, FAST and SCLK

NOTE:

1. The SCLK frequency must be at least 6 times greater than the faster FSCL frequency used on the I2C bus (SCL re-synchronization + state machine).

2. The SCLK frequency must be 6 times greater than the desired FSCL value programmed in PRV.

3. PRV value after reset is "500" (decimal).

4. It is not possible to write "000" (hexadecimal) to PRV.

16.4.1.6 I2C_SR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x0014, Reset Value = 0x0000_00F8

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											ų č	KSVD														SR				RSVD	
											ſ	Y																		R	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						0	0	U
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	0
SR	[7:3]	R	I2C status code Interface Status code. There are 27 possible status codes. I2C_SR reset value is 0x000000F8. When the I2C_SR contains this status code, no relevant status information is available. All other status codes correspond to a defined state of the interface. When each of these states is entered the corresponding status code appears in this register and the bit SI of I2C_CR is set. All of these status codes, their meaning, the next action to be performed by the sequencer/controller (software) driving the interface and the next action the interface will perform, are described next page	11111
RSVD	[2:0]	R	Reserved (Not used)	0

Status	Meaning	Ne	ext Acti		be Do Softwa	one by Controller are)	Next Action Interface will
Code		STA	STO	AA	SI	-	Perform
0x0000008	START condition has been transmitted	x	0	x	0	Load I2C_DAT with slave address and R/W bit. Reset SI of I2C_CR.	Slave address and R/W will be transmitted. Wait ACK.
0x00000010	REPEAT START condition has been transmitted	х	0	x	0	Load I2C_DAT with slave address and R/W bit. Reset SI of I2C_CR.	Slave address and R/W will be transmitted. Wait ACK. If R/W is Read, interface switch into receiver mode.
		0	0	x	0	Load I2C_DAT with data byte. Reset SI of I2C_CR.	Data byte will be transmitted. Wait for ACK.
	Slave address and	1	0	x	0	Set STA of I2C_CR. Reset SI of I2C_CR.	Generates repeated START condition.
0x00000018	WRITE has been sent, ACK received	0	1	x	0	Set STO of I2C_CR Reset SI of I2C_CR.	Generates STOP condition.
		1	1	x	0	Set STA and STO of I2C_CR. Reset SI of I2C_CR.	Generates STOP condition, then generates SART condition
0x00000020	Slave address and WRITE has been sent, No ACK received		As abo	ove.		As above.	As above.
0x00000028	Data byte transmitted, ACK received		As abo	ove.		As above.	As above.
0x00000030	Data byte transmitted, No ACK received		As abo	ove.		As above.	As above.
	Arbitration lost in Slave address and	0	0	x	0	Reset SI of I2C_CR.	Release I2C bus, switch to slave mode.
0x00000038	R/W bit transmission or in data byte transmission	1	0	x	0	Set STA of I2C_CR. Reset SI of I2C_CR.	Wait until the I2C is free to generate a START condition.

 Table 16-6
 Master/Transmitter Mode Status Codes

Status Code	Meaning	I	Next Ac		o be I (Softy	Done by Controller ware)	Next Action Interface will Perform
Code		STA	STO	AA	SI	-	win i eriorin
0x0000008	START condition has been transmitted	x	0	x	0	Load I2C_DAT with slave address and R/W bit. Reset SI of I2C_CR.	Slave address and R/W will be transmitted. Wait ACK.
0x00000010	REPEAT START condition has been transmitted	x	0	x	0	Load I2C_DAT with slave address and R/W bit. Reset SI of I2C_CR.	Slave address and R/W will be transmitted. Wait ACK. If R/W is Read, interface switch into receiver mode.
	Arbitration lost in Slave	0	0	x	0	Reset SI of I2C_CR.	Release I2C bus, switch to slave mode.
0x00000038	address and R/W bit transmission	1	0	x	0	Set STA of I2C_CR. Reset SI of I2C_CR.	Wait until the I2C is free to generate a START condition.
0x00000040	Slave address and Read has	0	0	1	0	Reset SI of I2C_CR. Set AA of I2C_CR.	Data byte will be received, ACK will be returned.
0x00000040	been sent, ACK received	0	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR.	Data byte will be received, No ACK will be returned.
		1	0	х	0	Set STA of I2C_CR Reset SI of I2C_CR.	Generates repeated START condition.
0x00000048	Slave address and Read has	0	1	х	0	Set STO of I2C_CR. Reset SI of I2C_CR.	Generates STOP condition.
0,00000040	been sent, No ACK received	1	1	x	0	Set STA and STO of I2C_CR. Reset SI of I2C_CR.	Generates STOP condition, then generates START condition
0.00000050	Data byte	0	0	1	0	Read data byte, reset SI of I2C_CR, set AA of I2C_CR.	New data byte will be received and ACK will be returned.
0x00000050	received, ACK returned	0	0	0	0	Read data byte, reset SI of I2C_CR, reset AA of I2C_CR.	New data byte will be received and no ACK will be returned.
	Data byte	1	0	x	0	Read data byte, set STA of I2C_CR, reset SI of I2C_CR.	Generates repeated START condition.
0x00000058	received, No ACK returned.	0	1	x	0	Read data byte, set STO of I2C_CR, reset SI of I2C_CR.	Generates STOP condition.
		1	1	х	0	Read data byte, set	Generates STOP

Table 16-7 Master/Receiver Mode Status Codes

SAMSUNG ELECTRONICS

Status Code	Meaning	I	Next Ac		o be I (Softv	Done by Controller ware)	Next Action Interface will Perform
Code		STA	STO	AA	SI	-	wiii Ferioriii
						STO of I2C_CR, set STA of I2C_CR, reset SI of I2C_CR.	condition, then generates START condition

Status	Meaning	Ne	ext Act		be Do Softw	one by Controller are)	Next Action Interface will
Code		STA	STO	AA	SI	-	Perform
0x0000060	Own Slave address	x	0	1	0	Reset SI of I2C_CR. Set AA of I2C_CR.	Data byte will be received, ACK will be returned.
0x0000060	+ W received, ACK returned.	x	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR.	Data byte will be received, No ACK will be returned.
	Arbitration lost in Slave address + R/W (in master	x	0	1	0	Reset SI of I2C_CR. Set AA of I2C_CR.	Data byte will be received, ACK will be returned.
0x0000068	mode); switch to slave mode, own slave address received; ACK has been returned	x	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR.	Data byte will be received, No ACK will be returned.
0x00000070	General Call Address has been	x	0	1	0	Reset SI of I2C_CR. Set AA of I2C_CR.	Data byte will be received, ACK will be returned.
0x0000070	received; ACK has been returned	x	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR.	Data byte will be received, No ACK will be returned.
	Arbitration lost in Slave address + R/W (in master	x	0	1	0	Reset SI of I2C_CR. Set AA of I2C_CR.	Data byte will be received, ACK will be returned.
0x00000078	mode); switch to slave mode, general call address received; ACK has been returned	x	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR.	Data byte will be received, No ACK will be returned.
0x00000080	Addressed with own address and W, data	x	0	1	0	Reset SI of I2C_CR. Set AA of I2C_CR.	Data byte will be received, ACK will be returned.
0x0000080	byte received, ACK returned	x	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR.	Data byte will be received, No ACK will be returned.
0x0000088	Addressed with own address, data byte	0	0	0	0	Read data byte, reset SI of I2C_CR. Reset AA of I2C_CR.	Switch to "not addressed" slave mode. Own address and general call recognition disabled.
	received, no ACK returned	0	0	1	0	Read data byte, reset SI of I2C_CR. Set AA of I2C_CR.	Switch to "not addressed" slave mode. Acknowledge own slave address and general call

Table 16-8 Slave/Receiver Mode Status Codes

SAMSUNG ELECTRONICS

Status Code	Meaning	N	ext Acti		be Do Softw	one by Controller are)	Next Action Interface will
Code		STA	STO	AA	SI	-	Perform
							(if GC = "1" of I2C_ADR).
		1	0	0	0	Read data byte, reset SI of I2C_CR. Reset AA of I2C_CR.Set STA of I2C_CR.	Switch to "not addressed" slave mode. Own address and general call recognition disabled. Start will be transmitted as soon as the bus becomes free.
		1	0	1	0	Read data byte, reset SI of I2C_CR. Set AA of I2C_CR. Set STA of I2C_CR.	Switch to "not addressed" slave mode. Acknowledge own slave address and general call (if GC = "1" of I2C_ADR). Start will be transmitted as soon as the bus becomes free.
	Addressed by	x	0	1	0	Read data byte, reset SI of I2C_CR. Set AA of I2C_CR.	Data byte will be received, ACK returned.
0x00000090	general call address, data byte received, ACK returned	x	0	0	0	Read data byte, reset SI of I2C_CR. Reset AA of I2C_CR.	Data byte will be received, no ACK returned.
		0	0	0	0	Read data byte, reset SI of I2C_CR. Reset AA of I2C_CR.	Switch to "not addressed" slave mode. Own address and general call recognition disabled.
0x0000098	Addressed by general call address, data byte received, no ACK returned	0	0	1	0	Read data byte, reset SI of I2C_CR. Set AA of I2C_CR.	Switch to "not addressed" slave mode. Acknowledge own slave address and general call (if GC = "1" of I2C_ADR).
		1	0	0	0	Read data byte, reset SI of I2C_CR. Reset AA of I2C_CR. Set STA of I2C_CR	Switch to "not addressed" slave mode. Own address and general call recognition disabled. Start will be

Status	Meaning	Ne	ext Acti		be Do Softwa	one by Controller are)	Next Action Interface will
Code		STA	STO	AA	SI	-	Perform
							transmitted as soon as the bus becomes free.
		1	0	1	0	Read data byte, reset SI of I2C_CR. Set AA of I2C_CR. Set STA of I2C_CR.	Switch to "not addressed" slave mode. Acknowledge own slave address and general call (if GC = "1" of I2C_ADR). Start will be transmitted as soon as the bus becomes free.
		0	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR.	
	A stop condition or repeated start	0	0	1	0	Reset SI of I2C_CR. Set AA of I2C_CR.	
0x000000A0	condition has been received while still addressed as slave	1	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR. Set STA of I2C_CR.	As Above
		1	0	1	0	Reset SI of I2C_CR. Set AA of I2C_CR. Set STA of I2C_CR.	

		NZ	avt Acti	on to	ho D	one by Controller	Next Arthur
Status	Meaning	INC			Softw	•	Next Action Interface will
Code	-	STA	STO	AA	SI	-	Perform
	Own Slave address	х	0	1	0	Write data byte. Reset SI of I2C_CR. Set AA of I2C_CR.	Data byte will be transmitted
0x000000A8	+ R received, ACK returned.	x	0	0	0	Write data byte. Reset SI of I2C_CR. Reset AA of I2C_CR.	Last data byte will be transmitted and slave will not further respond.
	Arbitration lost in slave address + R/W as master; own	х	0	1	0	Write data byte. Reset SI of I2C_CR. Set AA of I2C_CR.	Data byte will be transmitted
0x000000B0	slave address has been received; ACK has been returned.	х	0	0	0	Write data byte. Reset SI of I2C_CR. Reset AA of I2C_CR.	Last data byte will be transmitted and slave will not further respond.
	Data has been	х	0	1	0	Write data byte. Reset SI of I2C_CR. Set AA of I2C_CR.	Data byte will be transmitted
0x000000B8	transmitted; ACK has been received.	х	0	0	0	Write data byte. Reset SI of I2C_CR. Reset AA of I2C_CR.	Last data byte will be transmitted and slave will not further respond.
		0	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR.	Switch to "not addressed" slave mode. Own address and general call recognition disabled.
0x000000C0	Data has been transmitted; No ACK has been	0	0	1	0	Reset SI of I2C_CR. Set AA of I2C_CR.	Switch to "not addressed" slave mode. Acknowledge own slave address and general call (if GC = "1" of I2C_ADR).
	received	1	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR. Set STA of I2C_CR.	Switch to "not addressed" slave mode. Own address and general call recognition disabled. Start will be transmitted as soon as the bus becomes free.
		1	0	1	0	Reset SI of I2C_CR.	Switch to "not

 Table 16-9
 Slave/Transmitter Mode Status Codes

Status Code	Meaning	Ne	ext Acti		be Do Softwa	one by Controller are)	Next Action Interface will
Code		STA	STO	AA	SI	-	Perform
						Set AA of I2C_CR. Set STA of I2C_CR.	addressed" slave mode. Acknowledge own slave address and general call (if GC = "1" of I2C_ADR). Start will be transmitted as soon as the bus becomes free.
		0	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR.	
	Last data has been	0	0	1	0	Reset SI of I2C_CR. Set AA of I2C_CR.	
0x000000C8	transmitted, ACK received.	1	0	0	0	Reset SI of I2C_CR. Reset AA of I2C_CR. Set STA of I2C_CR.	As Above
		1	0	1	0	Reset SI of I2C_CR. Set AA of I2C_CR. Set STA of I2C_CR.	

Status Code	Meaning	Nex	t Actio		e Done ftware)	by Controller	Next Action Interface will Perform
Code		STA	STO	AA	SI	-	wiii Perioriii
0x000000F8	No revelant state information; SI = "0" in I2C_CR	_	Ι	_	_	No action	Wait or proceed current transfer.
0x00000000	Bus error due to an illegal START or STOP condition.	0	1	x	0	No action	Only internal hardware is affected. In all cases, the bus is released and STO is reset.

Table 16-10 Miscellaneous Status Codes

16.4.1.7 I2C_IMSCR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x0018, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RSVD														SI			KSVD	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:5]	R	Reserved (Not used)	0
SI	[4]	RW	SI interrupt enable 0 = No effect 1 = Enables SI interrupt	0
RSVD	[3:0]	R	Reserved (Not used)	0

16.4.1.8 I2C_RISR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x001C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RSVD														SI			Kavu	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:5]	R	Reserved (Not used)	0
SI	[4]	R	SI Raw Interrupt State Gives the raw interrupt state (prior to masking) of the SI interrupt	0
RSVD	[3:0]	R	Reserved (Not used)	0

NOTE: On a read this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

16.4.1.9 I2C_MISR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x0020, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													D																C	L	
													RSV														SI			202	
																			_												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:5]	R	Reserved (Not used)	0
SI	[4]	R	SI Masked Interrupt State Gives the masked interrupt state (prior to masking) of the SI interrupt	0
RSVD	[3:0]	R	Reserved (Not used)	0

NOTE: On a read this register gives the current masked status value of the corresponding interrupt. A write has no effect.

16.4.1.10 I2C_ICR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x0024, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RSVD														SI			RSVD	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	w	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:5]	R	Reserved (Not used)	0
SI	[4]	W	SI Interrupt Clear 0 = No effect 1 = Clears the SI interrupt	0
RSVD	[3:0]	R	Reserved (Not used)	0

NOTE: On a read this register gives the current masked status value of the corresponding interrupt. A write has no effect.

16.4.1.11 I2C_SDR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x0028, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												~																			
												KSVD															:	DAI			
											•	-																			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	RW	Reserved (Not used)	0
DAT	[7:0]	RW	I2C data Contains the incoming byte (just received from the I2C- bus) in the receiver mode and the outgoing data (to be send to the I2C-bus) in transmitter mode. DAT is always shifted from right to left. It means, the first bit transmitted to the I2C-bus is the MSB in transmitter mode, and the MSB is the first bit received from the I2C- bus in the receiver mode. During a transmission (when the interface send data to the I2C-bus) while the data is shifted out, the value on the SDA line is shifted in. So in case of an arbitration lost, DAT will contains the correct data (the value read from the bus)	0

16.4.1.12 I2C_SSAR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x002C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											ļ	þ															œ				~
											č	KSVD															ADR				GC
																				1						r					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
W	W	W	W	W	W	W	W	W	W	W	W	w	W	W	W	w	W	W	W	W	W	W	W	W	W	w	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	RW	Reserved (Not used)	0
ADR	[7:1]	RW	I2C address Contains the 7-bit I2C address to which the interface will respond when programmed as a slave (transmitter or receiver)	0
GC	[0]	RW	General call Enable the recognition of "general call address". When GC is set to "1", the interface will generate an interrupt when the "general call address" is recognized.	0

16.4.1.13 I2C_HSDR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x0030, Reset Value = 0x0000_0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												_																			
												KSVD															i	ЛГ			
												-																			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
W	W	W	w	W	W	w	W	w	w	W	W	W	W	W	W	W	W	W	W	w	w	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	RW	Reserved (Not used)	0
DL	[7:0]	RW	Hold/setup delay Contains the value of the Hold/Setup delay that is calculated with the formula: THOLD = DL[7-0] \times SCLK TSETUP = DL[7-0] \times SCLK	1

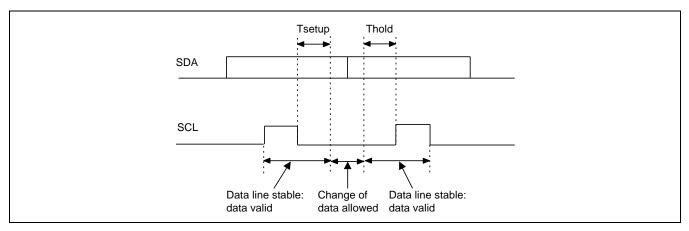


Figure 16-7 Hold and Setup Delays

NOTE:

- 1. DL value after reset is "1" (hexadecimal).
- 2. Setup delay (TSETUP) must be 250 ns (min in standard mode) or 100 ns (min in fast mode).
- 3. An I2C device must internally provide a hold time of at least 300 ns for the SDA signal. It is the user's responsibility to program the correct hold value to meet timing requirements of slow devices.
- 4. It is not possible to write "0" (hexadecimal) to DL

16.4.1.14 I2C_DMACR

- Base Address: 0x400F_0000
- Base Address: 0x400F_1000
- Address = Base Address + 0x0034, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																														TXDMAE	RXDMAE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:2]	R	Reserved (Not used)	0
TXDMAE	[1]	RW	DMA for the transmit Enable/Disable Control Bit 0 = Disable 1 = Enable	0
RXDMAE	[0]	RW	DMA for the receive Enable/Disable Control Bit 0 = Disable 1 = Enable	0

NOTE: I2C cannot transmit data through DMA when I2C is set to slave mode.

	•	
	•	
	•	

17 USB Controller

17.1 Overview

USB products are easy to use for end users. Electrical details, such as bus termination, are isolated from end users and plug and play is supported. There're other merits for users; Self-identifying peripherals, automatic mapping function to driver, auto-configuration, dynamically attach and detach and reconfiguration, and so on. USB architecture is suitable for wide range of workloads and applications. Various device can be attached which bandwidths ranging from a few Kbps (bits per sec) to several Mbps. This also supports multiple connections at the same time, up to 127 physical devices, including USB hub. USB architecture can be used for real-time data transfer, such as audio and video, with isochronous transfer. On the other hand, asynchronous transfer type is supported over the same set of wires.

Other merits of USB architecture are listed below:

- Wide range of packet size
- Wide range of device data rates by accommodating packet buffer size and latencies
- Error handling/fault recovery mechanism built into protocol
- Support for identification of faulty devices
- Suitable for development of low cost peripherals
- Low cost cables and connectors
- Easy architecture upgrade with multiple USB host controllers in a system

17.1.1 Features

Important features of the S3FN60D USB block are as follows:

- Fully Compliant to USB 2.0 full-speed specification (maximum 12 Mbps)
- Complete Device Configuration
- Compatible with both OpenHCI and Intel UHCI Standards
- Support 5 Endpoints (1 Control Endpoint, 4 Data Endpoints) with logical endpoint numbering
- EP0: 16 Bytes Control/Status Endpoint
- EP1/2: 64 Bytes Data Endpoint (In/Out) supporting automatic double buffering (each EP's physical size is 32 Bytes).
- EP3/4: 16 Bytes Data Endpoint (In/Out)

Endpoint	Description
	16 bytes FIFO
Endpoint 0	Does not support double-buffering
	Bidirectional endpoint for control transfer
	physical 64 bytes FIFO
	Configurable FIFO size
Endpoint 1/2	 Supports double-buffering (32 Bytes × 2)
	IN/OUT configurable
	Bulk/Interrupt/Isochronous
	Support logical endpoint feature
	physical 16 bytes FIFO
	Does not support double-buffering
Endpoint 3/4	IN/OUT configurable
	Bulk/Interrupt/Isochronous
	Support logical endpoint feature

- Supports Bulk Data Transfer
- CRC16 Generation and CRC5/CRC16 Checking
- Suspend/Resume Control
- Logical Numbering
- DMA operation with the memory to memory transfer mode of the DMA controller (EP1/EP2/EP3/EP4)
- **NOTE:** For DMA operation of the USB device, the DMA controller should operate as memory to memory transfer mode. In order to transfer EPx FIFO to the memory, set the DMA source address register to the address of EPx FIFO and disable(Fixed) the source address increment bit. In order to transfer the memory to EPx FIFO, set the DMA destination address register to the address of EPx FIFO and disable(Fixed) the destination address increment bit. The transferring size of DMA operation should be less than or equal to the maximum FIFO size of the Endpoint.

17.1.2 USB Block Overview

USB block is compatible with USB spec 1.1. There're 5 EPs (Endpoint) with EP0 for control transfer. This block uses 48 MHz. 48 MHz clock is used for SIE. 12 MHz clock is generated from 48 MHz and used for transmitting data throughout physical cable. FIQ/IRQ interrupt routine should be used for USB service. Max. packet size is programmable with special registers.

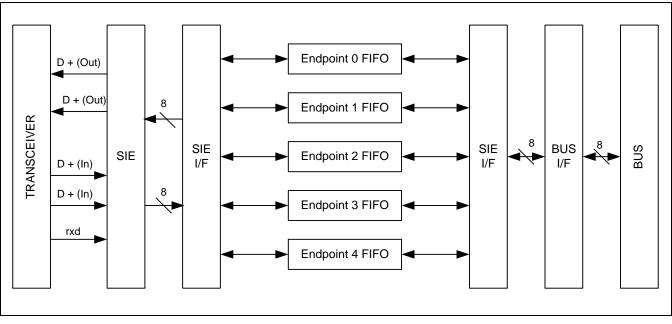


Figure 17-1 USB Core Block Diagram

17.2 Register Description

17.2.1 Register Map Summary

• Base Address: 0x4010_0000

Register	Offset	Description	Reset Value
USBFA	0x0000	USB function address register	0x0000_0000
USBPM	0x0004	USB power management register	0x0000_0000
USBINTMON	0x0008	USB interrupt register	0x0000_0000
USBINTCON	0x000C	USB interrupt enable register	0x0000_041F
USBFN	0x0010	USB frame number register	0x0000_0000
USBEPLNUM	0x0014	USB Logical endpoint number control register	0x0000_4321
USBEP0CSR	0x0020	USB endpoint 0 common status register	0x0000_0001
USBEP1CSR	0x0024	USB endpoint 1 common status register	0x0000_2001
USBEP2CSR	0x0028	USB endpoint 2 common status register	0x0000_2001
USBEP3CSR	0x002C	USB endpoint 3 common status register	0x0000_2001
USBEP4CSR	0x0030	USB endpoint 4 common status register	0x0000_2001
USBEP0WC	0x0040	USB write count register for endpoint 0	0x0000_0000
USBEP1WC	0x0044	USB write count register for endpoint 1	0x0000_0000
USBEP2WC	0x0048	USB write count register for endpoint 2	0x0000_0000
USBEP3WC	0x004C	USB write count register for endpoint 3	0x0000_0000
USBEP4WC	0x0050	USB write count register for endpoint 4	0x0000_0000
USBNAKCON1	0x0060	USB NAK control 1 register	0x0000000
USBNAKCON2	0x0064	USB NAK control 2 register	0x00000000
USBEP0	0x0080	USB endpoint 0 FIFO	0xXXXX_XXXX
USBEP1	0x0084	USB endpoint 1 FIFO	0xXXXX_XXXX
USBEP2	0x0088	USB endpoint 2 FIFO	0xXXXX_XXXX
USBEP3	0x008C	USB endpoint 3 FIFO	0xXXXX_XXXX
USBEP4	0x0090	USB endpoint 4 FIFO	0xXXXX_XXXX
PROGREG	0x00A0	USB configuration	0x0000_X080
FSPULLUP	0x00B4	USB FS Pull up control	0x0000_0000

NOTE: The Mark of "R[W]" in R/W column means that each register can be set in read or write mode, but once it is set to one mode, it cannot operate in the other mode. For example, USBEP1 is set to "R" in setup time, It can be read but not be written. So, if you want to write something in USBEP1 after it is set to R mode, you must re-setup the register to "W" mode.

17.2.1.1 USBFA

- Base Address: 0x4010_0000
- Address = Base Address + 0x0000, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												USBAUP				USBFAF			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S	R W	R W		R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	_	Reserved (Not used)	0
USBAUP	[7]	S	USB Address UPdate The CPU sets this bit whenever it updates the USB Function Address Field (USBFAF) in this register. The USBFAF is used after the Status phase of a Control transfer, which is signaled by the clearing of the DATA END bit in the Endpoint 0 CSR.	0
USBFAF	[6:0]	RW	USB Function Address Field The CPU writes the address to these bits.	0

17.2.1.2 USBPM

- Base Address: 0x4010_0000
- Address = Base Address + 0x0004, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD												NOSI		RSVD		RST	RU	WSNS	SUSE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	_	_	_	-	-	_	_	_	_	-	_	_	-	_	_	_	-	_	_	_	_	R W	_	_	_	R	R W	R C	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	-	Reserved (Not used)	0
ISOU	[7]	RW	ISO Update 0 = ISO data updated (zero data packet send) 1 = ISO data updated Used for ISO Mode only. If set, USB waits for a SOF token from the time USBINRDY was set to send the packet. If an IN token is received before a SOF token, then a zero length data packet will be sent.	0
RSVD	[6:4]	-	Reserved (Not used)	0
RST	[3]	R	ReSeT 0 = Normal operation 1 = Reset received state The USB set this bit if reset signaling is received from the host. This bit remains set as long as reset signaling persists on the bus.	0
RU	[2]	RW	ResUme 0 = Normal or suspend state 1 = Resume signal generation in suspend state The CPU sets this bit for a duration of 10 ms (maximum of 15ms) to initiate a resume signaling. The USB generates resume signaling while this bit is set in suspend mode.	0
SUSM	[1]	RC	 SUSpend Mode 0 = Normal operation 1 = Suspend state This bit is set by the USB when it enters suspend mode. It is cleared under the following conditions: The CPU clears the USB RESUme bit, to end resume 	0

Name	Bit	Туре	Description	Reset Value
			signaling.The CPU reads USB Interrupt Register for the USB Resume Interrupt.	
SUSE	[0]	RW	SUSpend Enable 0 = Disable Suspend mode (Default). 1 = Enable Suspend mode If this bit is a zero, the device will not enter suspend mode.	0

17.2.1.3 USBINTMON

- Base Address: 0x4010_0000
- Address = Base Address + 0x0008, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										RSVD											RSTI	RESI	SUSI		RSVD			Ĺ	EP1-EP4		EPOI
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	R	R	R	-	-	-	R	R	R	R	R
																					С	С	С				С	С	С	С	С

Name	Bit	Туре	Description	Reset Value
RSVD	[31:11]	Ι	Reserved (Not used)	0
RSTI	[10]	RC	ReSeT Interrupt 0 = No reset interrupt 1 = Reset interrupt generated The USB sets this bit, when it receives reset signaling.	0
RESI	[9]	RC	RESume Interrupt 0 = No resume interrupt 1 = Resume interrupt generated The USB sets this bit, when it receive resume signaling, while in suspend mode. If the resume is due to a USB reset, then the CPU is first interrupted with a Resume Interrupt. Once the clocks resume	0
			and the SE0 condition persists for 3 ms, USB RESET interrupt will be asserted.	
SUSI	[8]	RC	SUSpend Interrupt 0 = No suspend interrupt 1 = Suspend interrupt generated The USB sets this bit when it receives suspend signaling. This bit is set whenever there is no activity for 3 ms on the bus. Thus, if the CPU does not stop the clock after the first suspend interrupt, it will be continue to be interrupted every 3 ms as long as there is no activity on the USB bus. By default this interrupt is disabled.	0
RSVD	[7:5]	_	Reserved (Not used)	0
EP1–EP4	[4:1]	RC	EP1 Interrupt-EP4 Interrupt [4] EP4 Interrupt (EP4I) 0 = No EP4 interrupt 1 = EP4 interrupt generated [3] EP3 Interrupt (EP3I)	0

Name	Bit	Туре	Description	Reset Value
			0 = No EP3 interrupt 1 = EP3 interrupt generated [2] EP2 Interrupt (EP2I) 0 = No EP2 interrupt generated [1] EP1 Interrupt (EP1I) 0 = No EP1 interrupt (EP1I) 0 = No EP1 interrupt generated For Bulk Endpoints: The USB sets this bit under the following conditions: 1. IINRDY bit is cleared. 2. FIFO is flushed. 3. OSTSTALL/ISTSTALL is set. For ISO Endpoints: The USB sets this bit under the following conditions: 1. IUNDER bit is set. 2. IINRDY bit is cleared. 3. FIFO is flushed. 4. OSTSTALL/ISTSTALL is set. NOTE: Conditions 1 and 2 are mutually exclusive	
EPOI	[0]	RC	 EP0 Interrupt 0 = No EP0 interrupt 1 = EP0 interrupt generated This bit corresponds to endpoint 0 interrupt. The USB sets this bit under the following conditions: 1. ORDY bit is set. 2. INRDY bit is cleared. 3. STSTALL bit is set. 4. SETEND bit is set. 5. DEND bit is cleared (Indicates End of control transfer) 	0

NOTE: The CPU will be written a "1" to clear each pending bit.

There're 5 endpoints (EP0-EP4). Each bit in this register corresponds to the respective endpoint number. All interrupts corresponding to endpoints whose direction is programmable (Mode = IN/OUT), are mapped to this register.

This register maintains interrupt status of bus signaling condition viz.

- Suspend
- Resume
- Reset
- Disconnect

17.2.1.4 USBINTCON

- Base Address: 0x4010_0000
- Address = Base Address + 0x000C, Reset Value = 0x0000_041F

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										RSVD											RSTIEN	RSVD	SUSIEN		RSVD				EP0IEN-EP4IEN		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	R	I	R	-	-	-	R	R	R	R	R
																					W		W				W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:11]	_	Reserved (Not used)	0
RSTIEN	[10]	RW	ReSeT Interrupt ENable If bit = 0, the corresponding interrupt is disabled. If bit = 1, the corresponding interrupt is enabled.	1
RSVD	[9]	-	Reserved	0
SUSIEN	[8]	RW	SUSpend Interrupt ENable If bit = 0, the corresponding interrupt is disabled. If bit = 1, the corresponding interrupt is enabled.	0
RSVD	[7:5]	-	Reserved (Not used)	0
EP0IEN– EP4IEN	[4:0]	RW	 EP0 Interrupt ENable–EP4 Interrupt Enable [4] EndPoint 4 Interrupt ENable (EP4IEN) 0 = Disable endpoint 4 interrupt [3] EndPoint 3 Interrupt ENable (EP3IEN) 0 = Disable endpoint 3 interrupt 1 = Enable endpoint 3 interrupt [2] EndPoint 2 Interrupt ENable (EP2IEN) 0 = Disable endpoint 2 interrupt 1 = Enable endpoint 2 interrupt 1 = Enable endpoint 1 interrupt [1] EndPoint 1 Interrupt ENable (EP1IEN) 0 = Disable endpoint 1 interrupt 1 = Enable endpoint 0 interrupt 	0

Corresponding to each USB Interrupt Register (USBINTMON), there is an interrupt enable bit at USB Interrupt Control Register (USBINTCON). By default all interrupts are disabled.

SAMSUNG ELECTRONICS

17.2.1.5 USBFN

- Base Address: 0x4010_0000
- Address = Base Address + 0x0010, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										RSVD																Z					
										ш																					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:11]	-	Reserved (Not used)	0
FN	[10:0]	R	Frame Number Frame Number from SOF packet.	0

These registers maintain the Frame Number within SOF Packet. Frame Number within SOF Packet is 11 bits.

17.2.1.6 USBEPLNUM

• Base Address: 0x4010_0000

• Address = Base Address + 0x0014, Reset Value = 0x0000_4321

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								RSVD										LNUMEP4				LNUMEP3				LNUMEP2				LNUMEP1	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	_	_	_	_	_	-	-	-	-	-	-	_	-	-	R W	R W	R W	R W												

Name	Bit	Туре	Description	Reset Value
RSVD	[31:16]	-	Reserved (Not used)	0
LNUMEP4	[15:12]	RW	Logical Number EP4 These bits express logical EP number. So, Endpoint 4 (default) is able to be changed to other EP number from 8 to 14.	0100Ь
LNUMEP3	[11:8]	RW	Logical Number EP3 These bits express logical EP number. So, Endpoint 3 (default) is able to be changed to other EP number from 8 to 14.	0011b
LNUMEP2	[7:4]	RW	Logical Number EP2 These bits express logical EP number. So, Endpoint 2 (default) is able to be changed to other EP number from 8 to 14.	0010b
LNUMEP1	[3:0]	RW	Logical Number EP1 These bits express logical EP number. So, Endpoint 1 (default) is able to be changed to other EP number from 8 to 14.	0001Ь

This register holds the endpoint numbers to indicate each physical endpoint and the default number is the same as physical one. You can change endpoint number from 8 to 14 by setting this register.

17.2.1.7 USBEP0CSR

- Base Address: 0x4010_0000
- Address = Base Address + 0x0020, Reset Value = 0x0000_0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SVSET	SVORDY	SDSTALL	SETEND	DEND	STSTALL	INRDY	ORDY									KSVD								MAXPSET			RSVD				MAXP
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
W	w	s	R	R	R	R	R	-	-	-	-	١	-	-	-	-	-	-	-	-	-	-	-	W	-	-	-	-	-	R	R
				S	С	S																								W	w

Name	Bit	Туре	Description	Reset Value
SVSET	[31]	W	SerViced SETup end 0 = No operation 1 = SETEND bit clear The CPU writes a 1 to this bit to clear SETEND	0
SVORDY	[30]	W	SerViced Out ReaDY 0 = No operation 1 = ORDY bit clear The CPU writes a 1 to this bit to clear ORDY	0
SDSTALL	[29]	S	SenD STALL 0 = Normal operation state 1 = Go to stall token transmit state The CPU writes a 1 to this bit at the same time it clears ORDY, if it decodes a invalid token. The USB issues a STALL handshake to the current control transfer. The CPU writes a 0 to end the STALL condition.	0
SETEND	[28]	R	SETup END 0 = Normal operation state 1 = Setup end stage This is a read only bit The USB sets this bit when a control transfer ends before DEND is set. The CPU clears this bit by writing a 1 to the SVSET bit. When the USB sets this bit, an interrupt is generated to the CPU. When such a condition occurs, the USB flushes the FIFO, and invalidates CPU access to the FIFO. When CPU access to the FIFO is invalidated, this bit is cleared.	0

Name	Bit	Туре	Description	Reset Value
DEND	[27]	RS	Data END 0 = Not dataend stage 1 = Dataend stage The CPU sets this bit: 1. After loading the last packet of data into the FIFO, at the same time INRDY is set. 2. While it clears ORDY after unloading the last packet of data. 3. For a zero length data phase, when it clears ORDY and sets INRDY.	0
STSTALL	[26]	RC	SenT STALL 0 = No stall token is transmitted. 1 = Control transaction is ended due to a protocol violation. The USB sets this bit if a control transaction is ended due to a protocol violation. An interrupt is generated when this bit is set.	0
INRDY	[25]	RS	IN packet ReaDY 0 = Not yet loaded packet to EP0 FIFO, or in OUT mode 1 = Loading packet to EP0 FIFO completed The CPU sets this bit after writing a packet of data into endpoint 0 FIFO. The USB clears this bit once the packet has been successfully sent to the host. An interrupt is generated when the USB clears this bit, so the CPU can load the next packet. For a zero length data phase, the CPU sets INRDY and DEND at the same time.	0
ORDY	[24]	R	Out packet ReaDY 0 = Not received packet, or in IN mode 1 = Received packet from host This is a Read Only bit. The USB sets this bit once a valid token is written to the FIFO. An interrupt is generated when the USB sets this bit. The CPU clears this bit by writing a 1 to the SVORDY	0
RSVD	[23:8]	_	Reserved (Not used)	0
MAXPSET	[7]	W	MAXP size SETtable 0 = USBEP0CSR[1:0] isn't overwritten when CPU writes a 32- bit value to USBEP0CSR register. 1 = USBEP0CSR[1:0] is overwritten.	0
RSVD	[6:2]		Reserved (Not used)	0
MAXP	[1:0]	RW	MAXP size value If MAXP[1:0] is 00, then MAXPsize is 8 byte If MAXP[1:0] is 01, then MAXPsize is 8 bytes If MAXP[1:0] is 10, then MAXPsize is 16 bytes	1

NOTE: "N" in USBNCSR mean "1 to 4"

17.2.1.8 USBEP1CSR

- Base Address: 0x4010_0000
- Address = Base Address + 0x0024, Reset Value = 0x0000_2001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	ICLTOG	ISTSTALL	ISDSTALL	IFFLUSH	IUNDER	INEMP	IINRDY	OCLTOG	OSTSTALL	OSDSTALL	OFFLUSH	ODERR	OOVER	OFFULL	OORDY	IATSET	OORDY	MODE	DMA_MODE	DMA_IN_PKT	RSVD	OATCLR	OISO	MAXPSET		RSVD				MAXP	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	w	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-	R	R	W	-	-	_	R	R	R	R
		С	W	W	С		S		С	W	W				С	W	W	W	W	W		W	W					W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31]	-	Reserved (Not used)	0
ICLTOG	[30]	W	In mode, CLear data TOGgle 0 = No operation 1 = Data toggle flag set to 0 This bit is valid only when endpoint N is set to IN. When the CPU writes a 1 to this bit, the data toggle bit is cleared. This is a write-only register.	0
ISTSTALL	[29]	RC	In mode, SenT STALL 0 = No operation 1 = Stall handshake transmitted This bit is valid only when endpoint N is set to IN. The USB sets this bit when a STALL handshake is issued to an IN token, due to the CPU setting SEND STALL bit. When the USB issues a STALL handshake, IINRDY is cleared.	0
ISDSTALL	[28]	RW	In mode, SenD STALL 0 = No operation 1 = Stall handshake transmit state This bit is valid only when endpoint N is set to IN. The CPU writes a 1 to this register to issue a STALL handshake to the USB. The CPU clears this bit to end the STALL condition.	0
IFFLUSH	[27]	RW	In mode, Fifo FLUSH 0 = No operation 1 = FIFO flush This bit is valid only when endpoint N is set to IN. The CPU sets this bit if it intends to flush the IN FIFO. This bit is cleared by the USB when the FIFO is flushed. The CPU is interrupted when this happens. If a token is in progress, the USB waits until the transmission is complete before the FIFO	0

Name	Bit	Туре	Description	Reset Value
			is flushed. If two packets are loaded into the FIFO, only the top-most packet (one that was intended to be sent to the host) is flushed, and the corresponding IINRDY bit for that packet is cleared.	
IUNDER	[26]	RC	In mode, UNDER run 0 = No operation 1 = Received IN token but not ready (ISO) This bit is valid only when endpoint N is set to IN ISO. The USB sets this bit when in ISO mode, an IN token is received and the IINRDY bit is not set. The USB sends a zero length data packet for such conditions, and the next packet that is loaded into the FIFO is flushed.	0
INEMP	[25]	R	In mode, fifo Not EMPty 0 = No data packet in FIFO 1 = There is at least one packet of data in FIFO This bit is valid only when endpoint N is set to IN. Indicate there is at least one packet of data in FIFO. if USBEPNCSR[25:24] is 10 = 1 packet IN FIFO 11 = 2 packets of MAXP =< 1/2 FIFO or 1 packet of MAXP > 1/2 FIFO size	0
IINRDY	[24]	RS	In mode, IN packet ReaDY 0 = Not ready for IN operation 1 = Ready for IN operation This bit is valid only when endpoint N is set to IN. The CPU sets this bit, after writing a packet of data into the FIFO. The USB clears this bit once the packet has been successfully sent to the host. An interrupt is generated when the USB clears this bit, so the CPU can load the next packet, While this bit is set, the CPU will not be able to write to the FIFO. If the SEND STALL bit is set by the CPU, this bit cannot be set.	0
OCLTOG	[23]	R	Out mode, CLear data TOGgle 0 = No operation 1 = Data toggle flag set to 0 This bit is valid only when endpoint N is set to OUT. When the CPU writes a "1" to this bit, the data toggle sequence bit is reset to DATA0.	0
OSTSTALL	[22]	RC	Out mode, SenT STALL 0 = No operation 1 = Stall handshake transmitted This bit is valid only when endpoint N is set to OUT. The USB sets this bit when an OUT token is ended with a STALL handshake. The USB issues a stall handshake to the host if it sends more than MAXP data for the OUT token.	0

Name	Bit	Туре	Description	Reset Value
OSDSTALL	[21]	RW	Out mode, SenD STALL 0 = No operation 1 = Stall handshake transmit state This bit is valid only when endpoint N is set to OUT. The CPU writes a "1" to this bit to issue a STALL handshake to the USB. The CPU clears this bit to end the STALL condition	0
OFFLUSH	[20]	RW	Out mode, Fifo FLUSH 0 = No operation 1 = FIFO flush This bit is valid only when endpoint N is set to OUT. The CPU writes a "1" to flush the FIFO. This bit can be set only when OORDY is set. The packet due to be unloaded by the CPU will be flushed.	0
ODERR	[19]	R	Out mode, Data ERRor 0 = Normal operation 1 = Data error (ISO) This bit is valid only when endpoint N is set to OUT ISO. This bit should be sampled with OORDY. When set, it indicates the data packet due to be unloaded by the CPU has an error (either bit stuffing or CRC). If two packets are loaded into the FIFO, and the second packet has an error, then this bit gets set only after the first packet is unloaded. This is automatically cleared when OORDY gets cleared.	0
OOVER	[18]	R	Out mode, fifo OVER run 0 = Normal operation 1 = Data received at FIFO full state (ISO) This bit is valid only when endpoint N is set to OUT ISO. This bit is set if the core is not able to load an OUT ISO packet into the FIFO	0
OFFULL	[17]	R	Out mode, Fifo FULL 0 = Normal operation 1 = FIFO full state This bit is valid only when endpoint N is set to OUT. Indicates no more packets can be accepted if USBEPNCSR[17:16] is 00 = No packet in FIFO 01 = 1 packet in FIFO 11 = 2 packet of MAXP =< 1/2 FIFO size or 1 packet of MAXP > 1/2 FIFO size	0
OORDY	[16]	RC	Out mode, Out packet ReaDY 0 = Not received data packet 1 = Received packet from host This bit is valid only when endpoint N is set to OUT. The USB sets this bit once it has loaded a packet of data into the FIFO.	0

Name	Bit	Туре	Description	Reset Value
			Once the CPU reads the FIFO for the entire packet, this bit should be cleared by CPU	
IATSET	[15]	RW	In mode, AuTo SET 0 = No operation 1 = Auto setting IINRDY when MAXP-sized packet loaded This bit is valid only when endpoint N is set to IN. If set, whenever the CPU writes MAXP data, IINRDY will be automatically be set without any intervention from CPU. If the CPU writes less than MAXP data, then IINRDY bit has to be set by the CPU. Default = 0	0
IISO	[14]	RW	In mode, ISO mode This bit is valid only when endpoint N is set to IN. 0 = Endpoint N will be Bulk mode. 1 = Endpoint N will be ISO mode Default = 0	0
MODE	[13]	RW	In/out MODE selection 0 = Transfer direction will be OUT 1 = Transfer direction will be IN Default = 1 (IN)	1
DMA_MODE	[12]	RW	This bit is used only for endpoints whose interface has DMA. 0 = DMA disable (CPU interface) 1 = DMA enable Default = 0	0
DMA_IN_PKT	[11]	RW	This bit is used only for endpoints data transfer Start or End whose interface has DMA. 0 = Data transfer end indication with DMA 1 = Data transfer start indication with DMA Default = 0	0
RSVD	[10]	_	Reserved (Not used)	0
OATCLR	[9]	RW	Out mode, AuTo CLeaR 0 = No operation 1 = Auto clearing ORDY when FIFO data unloaded This bit is valid only when endpoint N is set to OUT.If set, whenever the CPU unloads last data in endpoint N FIFO, OORDY will automatically be cleared without any intervention from CPU. Default = 0	0
OISO	[8]	RW	Out mode, ISO mode This bit is valid only when endpoint N is set to OUT. 0 = Endpoint N will be Bulk mode. 1 = Endpoint N will be ISO mode Default = 0	0
MAXPSET	[7]	W	MAXP size SET table 0 = USBEPNCSR[4:0] isn't overwritten when CPU writes a 32-	0

Name	Bit	Туре	Description	Reset Value
			bit value to USBEPNCSR register. 1 = USBEPNCSR[4:0] is overwritten.	
RSVD	[6:4]	-	Reserved (Not used)	0
MAXP	[3:0]	RW	MAXP size value If MAXP[3:0] is 0000, then MAXPsize is 8 byte If MAXP[3:0] is 0001, then MAXPsize is 8 bytes If MAXP[3:0] is 0010, then MAXPsize is 16 bytes If MAXP[3:0] is 0100, then MAXPsize is 24 bytes If MAXP[3:0] is 0100, then MAXPsize is 32 bytes If MAXP[3:0] is 0101, then MAXPsize is 40 bytes If MAXP[3:0] is 0110, then MAXPsize is 48 bytes If MAXP[3:0] is 0111, then MAXPsize is 56 bytes If MAXP[3:0] is 1000, then MAXPsize is 64 bytes If MAXP[3:0] is 1000, then MAXPsize is 64 bytes If MAXP[3:0] is 1001, then MAXPsize is 72 bytes If MAXP[3:0] is 1010, then MAXPsize is 80 bytes If MAXP[3:0] is 1011, then MAXPsize is 80 bytes If MAXP[3:0] is 1011, then MAXPsize is 10 bytes If MAXP[3:0] is 1100, then MAXPsize is 104 bytes If MAXP[3:0] is 1110, then MAXPsize is 120 bytes If MAXP[3:0] is 1111, then MAXPsize is 120 bytes NOTE: EP3CSR and EP4CSR have up to 16 bytes	0001Ь

NOTE: "N" in USBNCSR mean "1 to 4".

17.2.1.9 USBEP2CSR

- Base Address: 0x4010_0000
- Address = Base Address + 0x0028, Reset Value = 0x0000_2001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	ICLTOG	ISTSTALL	ISDSTALL	IFFLUSH	IUNDER	INEMP	IINRDY	OCLTOG	OSTSTALL	OSDSTALL	OFFLUSH	ODERR	OOVER	OFFULL	OORDY	IATSET	IISO	MODE	DMA_MODE	DMA_IN_PKT	RSVD	OATCLR	OISO	MAXPSET		RSVD				MAXP	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	w	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	1	R	R	W	1	١	I	R	R	R	R
		С	W	W	С		S		С	W	W				С	W	W	W	W	W		W	W					W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31]	-	Reserved (Not used)	0
ICLTOG	[30]	W	In mode, CLear data TOGgle 0 = No operation 1 = Data toggle flag set to 0 This bit is valid only when endpoint N is set to IN. When the CPU writes a 1 to this bit, the data toggle bit is cleared. This is a write-only register.	0
ISTSTALL	[29]	RC	In mode, SenT STALL 0 = No operation 1 = Stall handshake transmitted This bit is valid only when endpoint N is set to IN. The USB sets this bit when a STALL handshake is issued to an IN token, due to the CPU setting SEND STALL bit. When the USB issues a STALL handshake, IINRDY is cleared.	0
ISDSTALL	[28]	RW	In mode, SenD STALL 0 = No operation 1 = Stall handshake transmit state This bit is valid only when endpoint N is set to IN. The CPU writes a 1 to this register to issue a STALL handshake to the USB. The CPU clears this bit to end the STALL condition.	0
IFFLUSH	[27]	RW	In mode, Fifo FLUSH 0 = No operation 1 = FIFO flush This bit is valid only when endpoint N is set to IN. The CPU sets this bit if it intends to flush the IN FIFO. This bit is cleared by the USB when the FIFO is flushed. The CPU is interrupted when this happens. If a token is in progress, the USB waits until the transmission is complete before the FIFO	0

Name	Bit	Туре	Description	Reset Value
			is flushed. If two packets are loaded into the FIFO, only the top-most packet (one that was intended to be sent to the host) is flushed, and the corresponding IINRDY bit for that packet is cleared.	
IUNDER	[26]	RC	In mode, UNDER run 0 = No operation 1 = Received IN token but not ready (ISO) This bit is valid only when endpoint N is set to IN ISO. The USB sets this bit when in ISO mode, an IN token is received and the IINRDY bit is not set. The USB sends a zero length data packet for such conditions, and the next packet that is loaded into the FIFO is flushed.	0
INEMP	[25]	R	In mode, fifo Not EMPty 0 = No data packet in FIFO 1 = There is at least one packet of data in FIFO This bit is valid only when endpoint N is set to IN. Indicate there is at least one packet of data in FIFO. if USBEPNCSR[25:24] is 10 = 1 packet IN FIFO 11 = 2 packets of MAXP =< 1/2 FIFO or 1 packet of MAXP > 1/2 FIFO size	0
IINRDY	[24]	RS	In mode, IN packet ReaDY 0 = Not ready for IN operation 1 = Ready for IN operation This bit is valid only when endpoint N is set to IN. The CPU sets this bit, after writing a packet of data into the FIFO. The USB clears this bit once the packet has been successfully sent to the host. An interrupt is generated when the USB clears this bit, so the CPU can load the next packet, While this bit is set, the CPU will not be able to write to the FIFO. If the SEND STALL bit is set by the CPU, this bit cannot be set.	0
OCLTOG	[23]	R	Out mode, CLear data TOGgle 0 = No operation 1 = Data toggle flag set to 0 This bit is valid only when endpoint N is set to OUT. When the CPU writes a "1" to this bit, the data toggle sequence bit is reset to DATA0.	0
OSTSTALL	[22]	RC	Out mode, SenT STALL 0 = No operation 1 = Stall handshake transmitted This bit is valid only when endpoint N is set to OUT. The USB sets this bit when an OUT token is ended with a STALL handshake. The USB issues a stall handshake to the host if it sends more than MAXP data for the OUT token.	0

Name	Bit	Туре	Description	Reset Value
OSDSTALL	[21]	RW	Out mode, SenD STALL 0 = No operation 1 = Stall handshake transmit state This bit is valid only when endpoint N is set to OUT. The CPU writes a "1" to this bit to issue a STALL handshake to the USB. The CPU clears this bit to end the STALL condition	0
OFFLUSH	[20]	RW	Out mode, Fifo FLUSH 0 = No operation 1 = FIFO flush This bit is valid only when endpoint N is set to OUT. The CPU writes a "1" to flush the FIFO. This bit can be set only when OORDY is set. The packet due to be unloaded by the CPU will be flushed.	0
ODERR	[19]	R	Out mode, Data ERRor 0 = Normal operation 1 = Data error (ISO) This bit is valid only when endpoint N is set to OUT ISO. This bit should be sampled with OORDY. When set, it indicates the data packet due to be unloaded by the CPU has an error (either bit stuffing or CRC). If two packets are loaded into the FIFO, and the second packet has an error, then this bit gets set only after the first packet is unloaded. This is automatically cleared when OORDY gets cleared.	0
OOVER	[18]	R	Out mode, fifo OVER run 0 = Normal operation 1 = Data received at FIFO full state (ISO) This bit is valid only when endpoint N is set to OUT ISO. This bit is set if the core is not able to load an OUT ISO packet into the FIFO	0
OFFULL	[17]	R	Out mode, Fifo FULL 0 = Normal operation 1 = FIFO full state This bit is valid only when endpoint N is set to OUT. Indicates no more packets can be accepted if USBEPNCSR[17:16] is 00 = No packet in FIFO 01 = 1 packet in FIFO 11 = 2 packet of MAXP =< 1/2 FIFO size or 1 packet of MAXP > 1/2 FIFO size	0
OORDY	[16]	RC	Out mode, Out packet ReaDY 0 = Not received data packet 1 = Received packet from host This bit is valid only when endpoint N is set to OUT. The USB sets this bit once it has loaded a packet of data into the FIFO.	0

Name	Bit	Туре	Description	Reset Value
			Once the CPU reads the FIFO for the entire packet, this bit should be cleared by CPU	
IATSET	[15]	RW	In mode, AuTo SET 0 = No operation 1 = Auto setting IINRDY when MAXP-sized packet loaded This bit is valid only when endpoint N is set to IN. If set, whenever the CPU writes MAXP data, IINRDY will be automatically be set without any intervention from CPU. If the CPU writes less than MAXP data, then IINRDY bit has to be set by the CPU. Default = 0	0
IISO	[14]	RW	In mode, ISO mode This bit is valid only when endpoint N is set to IN. 0 = Endpoint N will be Bulk mode. 1 = Endpoint N will be ISO mode Default = 0	0
MODE	[13]	RW	In/out MODE selection 0 = Transfer direction will be OUT 1 = Transfer direction will be IN Default = 1 (IN)	1
DMA_MODE	[12]	RW	This bit is used only for endpoints whose interface has DMA. 0 = DMA disable (CPU interface) 1 = DMA enable Default = 0	0
DMA_IN_PKT	[11]	RW	This bit is used only for endpoints data transfer Start or End whose interface has DMA. 0 = Data transfer end indication with DMA 1 = Data transfer start indication with DMA Default = 0	0
RSVD	[10]	-	Reserved (Not used)	0
OATCLR	[9]	RW	Out mode, AuTo CLeaR 0 = No operation 1 = Auto clearing ORDY when FIFO data unloaded This bit is valid only when endpoint N is set to OUT.If set, whenever the CPU unloads last data in endpoint N FIFO, OORDY will automatically be cleared without any intervention from CPU. Default = 0	0
OISO	[8]	RW	Out mode, ISO mode This bit is valid only when endpoint N is set to OUT. 0 = Endpoint N will be Bulk mode. 1 = Endpoint N will be ISO mode Default = 0	0
MAXPSET	[7]	W	MAXP size SET table 0 = USBEPNCSR[4:0] isn't overwritten when CPU writes a 32-	0

Name	Bit	Туре	Description	Reset Value
			bit value to USBEPNCSR register. 1 = USBEPNCSR[4:0] is overwritten.	
RSVD	[6:4]	_	Reserved (Not used)	0
MAXP	[3:0]	RW	MAXP size value If MAXP[3:0] is 0000, then MAXPsize is 8 byte If MAXP[3:0] is 0001, then MAXPsize is 8 bytes If MAXP[3:0] is 0010, then MAXPsize is 16 bytes If MAXP[3:0] is 0110, then MAXPsize is 24 bytes If MAXP[3:0] is 0100, then MAXPsize is 32 bytes If MAXP[3:0] is 0101, then MAXPsize is 40 bytes If MAXP[3:0] is 0110, then MAXPsize is 48 bytes If MAXP[3:0] is 0111, then MAXPsize is 56 bytes If MAXP[3:0] is 1000, then MAXPsize is 64 bytes If MAXP[3:0] is 1000, then MAXPsize is 64 bytes If MAXP[3:0] is 1001, then MAXPsize is 72 bytes If MAXP[3:0] is 1010, then MAXPsize is 80 bytes If MAXP[3:0] is 1011, then MAXPsize is 80 bytes If MAXP[3:0] is 1011, then MAXPsize is 10 bytes If MAXP[3:0] is 1110, then MAXPsize is 104 bytes If MAXP[3:0] is 1111, then MAXPsize is 120 bytes If MAXP[3:0] is 1111, then MAXPsize is 120 bytes NOTE: EP3CSR and EP4CSR have up to 16 bytes	0001

NOTE: "N" in USBNCSR mean "1 to 4"

17.2.1.10 USBEP3CSR

- Base Address: 0x4010_0000
- Address = Base Address + 0x002C, Reset Value = 0x0000_2001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	ICLTOG	ISTSTALL	ISDSTALL	IFFLUSH	IUNDER	INEMP	IINRDY	OCLTOG	OSTSTALL	OSDSTALL	OFFLUSH	ODERR	OOVER	OFFULL	OORDY	IATSET	OSII	MODE	DMA_MODE	DMA_IN_PKT	RSVD	OATCLR	OISO	MAXPSET		RSVD				MAXP	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-	R	R	W	-	-	-	R	R	R	R
		С	W	W	С		s		С	W	W				С	W	W	W	W	W		W	W					W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31]	-	Reserved (Not used)	0
ICLTOG	[30]	W	In mode, CLear data TOGgle 0 = No operation 1 = Data toggle flag set to 0 This bit is valid only when endpoint N is set to IN. When the CPU writes a 1 to this bit, the data toggle bit is cleared. This is a write-only register.	0
ISTSTALL	[29]	RC	In mode, SenT STALL 0 = No operation 1 = Stall handshake transmitted This bit is valid only when endpoint N is set to IN. The USB sets this bit when a STALL handshake is issued to an IN token, due to the CPU setting SEND STALL bit. When the USB issues a STALL handshake, IINRDY is cleared.	0
ISDSTALL	[28]	RW	In mode, SenD STALL 0 = No operation 1 = Stall handshake transmit state This bit is valid only when endpoint N is set to IN. The CPU writes a 1 to this register to issue a STALL handshake to the USB. The CPU clears this bit to end the STALL condition.	0
IFFLUSH	[27]	RW	In mode, Fifo FLUSH 0 = No operation 1 = FIFO flush This bit is valid only when endpoint N is set to IN. The CPU sets this bit if it intends to flush the IN FIFO. This bit is cleared by the USB when the FIFO is flushed. The CPU is interrupted when this happens. If a token is in progress, the USB waits until the transmission is complete before the FIFO	0

Name	Bit	Туре	Description	Reset Value
			is flushed. If two packets are loaded into the FIFO, only the top-most packet (one that was intended to be sent to the host) is flushed, and the corresponding IINRDY bit for that packet is cleared.	
IUNDER	[26]	RC	In mode, UNDER run 0 = No operation 1 = Received IN token but not ready (ISO) This bit is valid only when endpoint N is set to IN ISO. The USB sets this bit when in ISO mode, an IN token is received and the IINRDY bit is not set. The USB sends a zero length data packet for such conditions, and the next packet that is loaded into the FIFO is flushed.	0
INEMP	[25]	R	In mode, fifo Not EMPty 0 = No data packet in FIFO 1 = There is at least one packet of data in FIFO This bit is valid only when endpoint N is set to IN. Indicate there is at least one packet of data in FIFO. if USBEPNCSR[25:24] is 10 = 1 packet IN FIFO 11 = 2 packets of MAXP =< 1/2 FIFO or 1 packet of MAXP > 1/2 FIFO size	0
IINRDY	[24]	RS	In mode, IN packet ReaDY 0 = Not ready for IN operation 1 = Ready for IN operation This bit is valid only when endpoint N is set to IN. The CPU sets this bit, after writing a packet of data into the FIFO. The USB clears this bit once the packet has been successfully sent to the host. An interrupt is generated when the USB clears this bit, so the CPU can load the next packet, While this bit is set, the CPU will not be able to write to the FIFO. If the SEND STALL bit is set by the CPU, this bit cannot be set.	0
OCLTOG	[23]	R	Out mode, CLear data TOGgle 0 = No operation 1 = Data toggle flag set to 0 This bit is valid only when endpoint N is set to OUT. When the CPU writes a "1" to this bit, the data toggle sequence bit is reset to DATA0.	0
OSTSTALL	[22]	RC	Out mode, SenT STALL 0 = No operation 1 = Stall handshake transmitted This bit is valid only when endpoint N is set to OUT. The USB sets this bit when an OUT token is ended with a STALL handshake. The USB issues a stall handshake to the host if it sends more than MAXP data for the OUT token.	0

Name	Bit	Туре	Description	Reset Value
OSDSTALL	[21]	RW	Out mode, SenD STALL 0 = No operation 1 = Stall handshake transmit state This bit is valid only when endpoint N is set to OUT. The CPU writes a "1" to this bit to issue a STALL handshake to the USB. The CPU clears this bit to end the STALL condition	0
OFFLUSH	[20]	RW	Out mode, Fifo FLUSH 0 = No operation 1 = FIFO flush This bit is valid only when endpoint N is set to OUT. The CPU writes a "1" to flush the FIFO. This bit can be set only when OORDY is set. The packet due to be unloaded by the CPU will be flushed.	0
ODERR	[19]	R	Out mode, Data ERRor 0 = Normal operation 1 = Data error (ISO) This bit is valid only when endpoint N is set to OUT ISO. This bit should be sampled with OORDY. When set, it indicates the data packet due to be unloaded by the CPU has an error (either bit stuffing or CRC). If two packets are loaded into the FIFO, and the second packet has an error, then this bit gets set only after the first packet is unloaded. This is automatically cleared when OORDY gets cleared.	0
OOVER	[18]	R	Out mode, fifo OVER run 0 = Normal operation 1 = Data received at FIFO full state (ISO) This bit is valid only when endpoint N is set to OUT ISO. This bit is set if the core is not able to load an OUT ISO packet into the FIFO	0
OFFULL	[17]	R	Out mode, Fifo FULL 0 = Normal operation 1 = FIFO full state This bit is valid only when endpoint N is set to OUT. Indicates no more packets can be accepted if USBEPNCSR[17:16] is 00 = No packet in FIFO 01 = 1 packet in FIFO 11 = 2 packet of MAXP =< 1/2 FIFO size or 1 packet of MAXP > 1/2 FIFO size	0
OORDY	[16]	RC	Out mode, Out packet ReaDY 0 = Not received data packet 1 = Received packet from host This bit is valid only when endpoint N is set to OUT. The USB sets this bit once it has loaded a packet of data into the FIFO.	0

Name	Bit	Туре	Description	Reset Value
			Once the CPU reads the FIFO for the entire packet, this bit should be cleared by CPU	
IATSET	[15]	RW	In mode, AuTo SET 0 = No operation 1 = Auto setting IINRDY when MAXP-sized packet loaded This bit is valid only when endpoint N is set to IN. If set, whenever the CPU writes MAXP data, IINRDY will be automatically be set without any intervention from CPU. If the CPU writes less than MAXP data, then IINRDY bit has to be set by the CPU. Default = 0	0
IISO	[14]	RW	In mode, ISO mode This bit is valid only when endpoint N is set to IN. 0 = Endpoint N will be Bulk mode. 1 = Endpoint N will be ISO mode Default = 0	0
MODE	[13]	RW	In/out MODE selection 0 = Transfer direction will be OUT 1 = Transfer direction will be IN Default = 1 (IN)	1
DMA_MODE	[12]	RW	This bit is used only for endpoints whose interface has DMA. 0 = DMA disable (CPU interface) 1 = DMA enable Default = 0	0
DMA_IN_PKT	[11]	RW	This bit is used only for endpoints data transfer Start or End whose interface has DMA. 0 = Data transfer end indication with DMA 1 = Data transfer start indication with DMA Default = 0	0
RSVD	[10]	_	Reserved (Not used)	0
OATCLR	[9]	RW	Out mode, AuTo CLeaR 0 = No operation 1 = Auto clearing ORDY when FIFO data unloaded This bit is valid only when endpoint N is set to OUT.If set, whenever the CPU unloads last data in endpoint N FIFO, OORDY will automatically be cleared without any intervention from CPU. Default = 0	0
OISO	[8]	RW	Out mode, ISO mode This bit is valid only when endpoint N is set to OUT. 0 = Endpoint N will be Bulk mode. 1 = Endpoint N will be ISO mode Default = 0	0
MAXPSET	[7]	W	MAXP size SET table 0 = USBEPNCSR[4:0] isn't overwritten when CPU writes a 32-	0

Name	Bit	Туре	Description	Reset Value
			bit value to USBEPNCSR register. 1 = USBEPNCSR[4:0] is overwritten.	
RSVD	[6:4]	-	Reserved (Not used)	0
MAXP	[3:0]	RW	MAXP size value If MAXP[3:0] is 0000, then MAXPsize is 8 byte If MAXP[3:0] is 0001, then MAXPsize is 8 bytes If MAXP[3:0] is 0010, then MAXPsize is 16 bytes If MAXP[3:0] is 0100, then MAXPsize is 24 bytes If MAXP[3:0] is 0100, then MAXPsize is 32 bytes If MAXP[3:0] is 0101, then MAXPsize is 40 bytes If MAXP[3:0] is 0110, then MAXPsize is 48 bytes If MAXP[3:0] is 0111, then MAXPsize is 56 bytes If MAXP[3:0] is 1000, then MAXPsize is 64 bytes If MAXP[3:0] is 1000, then MAXPsize is 64 bytes If MAXP[3:0] is 1001, then MAXPsize is 72 bytes If MAXP[3:0] is 1010, then MAXPsize is 80 bytes If MAXP[3:0] is 1011, then MAXPsize is 80 bytes If MAXP[3:0] is 1011, then MAXPsize is 10 bytes If MAXP[3:0] is 1100, then MAXPsize is 104 bytes If MAXP[3:0] is 1111, then MAXPsize is 120 bytes If MAXP[3:0] is 1111, then MAXPsize is 120 bytes NOTE: EP3CSR and EP4CSR have up to 16 bytes	0001

NOTE: "N" in USBNCSR mean "1 to 4".

17.2.1.11 USBEP4CSR

- Base Address: 0x4010_0000
- Address = Base Address + 0x0030, Reset Value = 0x0000_2001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	ICLTOG	ISTSTALL	ISDSTALL	IFFLUSH	IUNDER	INEMP	IINRDY	OCLTOG	OSTSTALL	OSDSTALL	OFFLUSH	ODERR	OOVER	OFFULL	OORDY	IATSET	OSII	MODE	DMA_MODE	DMA_IN_PKT	RSVD	OATCLR	OISO	MAXPSET		RSVD				MAXP	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	w	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-	R	R	R	-	-	_	R	R	R	R
		С	W	W	С		s		С	W	W				С	W	W	W	W	W		W	W					W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31]	-	Reserved (Not used)	0
ICLTOG	[30]	W	In mode, CLear data TOGgle 0 = No operation 1 = Data toggle flag set to 0 This bit is valid only when endpoint N is set to IN. When the CPU writes a 1 to this bit, the data toggle bit is cleared. This is a write-only register.	0
ISTSTALL	[29]	RC	In mode, SenT STALL 0 = No operation 1 = Stall handshake transmitted This bit is valid only when endpoint N is set to IN. The USB sets this bit when a STALL handshake is issued to an IN token, due to the CPU setting SEND STALL bit. When the USB issues a STALL handshake, IINRDY is cleared.	0
ISDSTALL	[28]	RW	In mode, SenD STALL 0 = No operation 1 = Stall handshake transmit state This bit is valid only when endpoint N is set to IN. The CPU writes a 1 to this register to issue a STALL handshake to the USB. The CPU clears this bit to end the STALL condition.	0
IFFLUSH	[27]	RW	In mode, Fifo FLUSH 0 = No operation 1 = FIFO flush This bit is valid only when endpoint N is set to IN. The CPU sets this bit if it intends to flush the IN FIFO. This bit is cleared by the USB when the FIFO is flushed. The CPU is interrupted when this happens. If a token is in progress, the	0

Name	Bit	Туре	Description	Reset Value
			USB waits until the transmission is complete before the FIFO is flushed. If two packets are loaded into the FIFO, only the top-most packet (one that was intended to be sent to the host) is flushed, and the corresponding IINRDY bit for that packet is cleared.	
IUNDER	[26]	RC	In mode, UNDER run 0 = No operation 1 = Received IN token but not ready (ISO) This bit is valid only when endpoint N is set to IN ISO. The USB sets this bit when in ISO mode, an IN token is received and the IINRDY bit is not set. The USB sends a zero length data packet for such conditions, and the next packet that is loaded into the FIFO is flushed.	0
INEMP	[25]	R	In mode, fifo Not EMPty 0 = No data packet in FIFO 1 = There is at least one packet of data in FIFO This bit is valid only when endpoint N is set to IN. Indicate there is at least one packet of data in FIFO. if USBEPNCSR[25:24] is 10 = 1 packet IN FIFO 11 = 2 packets of MAXP =< 1/2 FIFO or 1 packet of MAXP > 1/2 FIFO size	0
IINRDY	[24]	RS	In mode, IN packet ReaDY 0 = Not ready for IN operation 1 = Ready for IN operation This bit is valid only when endpoint N is set to IN. The CPU sets this bit, after writing a packet of data into the FIFO. The USB clears this bit once the packet has been successfully sent to the host. An interrupt is generated when the USB clears this bit, so the CPU can load the next packet, While this bit is set, the CPU will not be able to write to the FIFO. If the SEND STALL bit is set by the CPU, this bit cannot be set.	0
OCLTOG	[23]	R	Out mode, CLear data TOGgle 0 = No operation 1 = Data toggle flag set to 0 This bit is valid only when endpoint N is set to OUT. When the CPU writes a "1" to this bit, the data toggle sequence bit is reset to DATA0.	0
OSTSTALL	[22]	RC	Out mode, SenT STALL 0 = No operation 1 = Stall handshake transmitted This bit is valid only when endpoint N is set to OUT. The USB sets this bit when an OUT token is ended with a STALL handshake. The USB issues a stall handshake to the host if it sends more	0

Name	Bit	Туре	Description	Reset Value
			than MAXP data for the OUT token.	
OSDSTALL	[21]	RW	Out mode, SenD STALL 0 = No operation 1 = Stall handshake transmit state This bit is valid only when endpoint N is set to OUT. The CPU writes a "1" to this bit to issue a STALL handshake to the USB. The CPU clears this bit to end the STALL condition	0
OFFLUSH	[20]	RW	Out mode, Fifo FLUSH 0 = No operation 1 = FIFO flush This bit is valid only when endpoint N is set to OUT. The CPU writes a "1" to flush the FIFO. This bit can be set only when OORDY is set. The packet due to be unloaded by the CPU will be flushed.	0
ODERR	[19]	R	Out mode, Data ERRor 0 = Normal operation 1 = Data error (ISO) This bit is valid only when endpoint N is set to OUT ISO. This bit should be sampled with OORDY. When set, it indicates the data packet due to be unloaded by the CPU has an error (either bit stuffing or CRC). If two packets are loaded into the FIFO, and the second packet has an error, then this bit gets set only after the first packet is unloaded. This is automatically cleared when OORDY gets cleared.	0
OOVER	[18]	R	Out mode, fifo OVER run 0 = Normal operation 1 = Data received at FIFO full state (ISO) This bit is valid only when endpoint N is set to OUT ISO. This bit is set if the core is not able to load an OUT ISO packet into the FIFO	0
OFFULL	[17]	R	Out mode, Fifo FULL 0 = Normal operation 1 = FIFO full state This bit is valid only when endpoint N is set to OUT. Indicates no more packets can be accepted if USBEPNCSR[17:16] is 00 = No packet in FIFO 01 = 1 packet in FIFO 11 = 2 packet of MAXP =< 1/2 FIFO size or 1 packet of MAXP > 1/2 FIFO size	0
OORDY	[16]	RC	Out mode, Out packet ReaDY 0 = Not received data packet 1 = Received packet from host This bit is valid only when endpoint N is set to OUT. The USB	0

Name	Bit	Туре	Description	Reset Value
			sets this bit once it has loaded a packet of data into the FIFO. Once the CPU reads the FIFO for the entire packet, this bit should be cleared by CPU	
IATSET	[15]	RW	In mode, AuTo SET 0 = No operation 1 = Auto setting IINRDY when MAXP-sized packet loaded This bit is valid only when endpoint N is set to IN. If set, whenever the CPU writes MAXP data, IINRDY will be automatically be set without any intervention from CPU. If the CPU writes less than MAXP data, then IINRDY bit has to be set by the CPU. Default = 0	0
IISO	[14]	RW	In mode, ISO mode This bit is valid only when endpoint N is set to IN. 0 = Endpoint N will be Bulk mode. 1 = Endpoint N will be ISO mode Default = 0	0
MODE	[13]	RW	In/out MODE selection 0 = Transfer direction will be OUT 1 = Transfer direction will be IN Default = 1 (IN)	1
DMA_MODE	[12]	RW	This bit is used only for endpoints whose interface has DMA. 0 = DMA disable (CPU interface) 1 = DMA enable Default = 0	0
DMA_IN_PKT	[11]	RW	This bit is used only for endpoints data transfer Start or End whose interface has DMA. 0 = Data transfer end indication with DMA 1 = Data transfer start indication with DMA Default = 0	0
RSVD	[10]	_	Reserved (Not used)	0
OATCLR	[9]	RW	Out mode, AuTo CLeaR 0 = No operation 1 = Auto clearing ORDY when FIFO data unloaded This bit is valid only when endpoint N is set to OUT.If set, whenever the CPU unloads last data in endpoint N FIFO, OORDY will automatically be cleared without any intervention from CPU. Default = 0	0
OISO	[8]	RW	Out mode, ISO mode This bit is valid only when endpoint N is set to OUT. 0 = Endpoint N will be Bulk mode. 1 = Endpoint N will be ISO mode Default = 0	0
MAXPSET	[7]	W	MAXP size SET table	0

Name	Bit	Туре	Description	Reset Value
			0 = USBEPNCSR[4:0] isn't overwritten when CPU writes a 32- bit value to USBEPNCSR register. 1 = USBEPNCSR[4:0] is overwritten.	
RSVD	[6:4]	-	Reserved (Not used)	0
МАХР	[3:0]	RW	MAXP size value If MAXP[3:0] is 0000, then MAXPsize is 8 byte If MAXP[3:0] is 0001, then MAXPsize is 8 bytes If MAXP[3:0] is 0010, then MAXPsize is 16 bytes If MAXP[3:0] is 0011, then MAXPsize is 24 bytes If MAXP[3:0] is 0100, then MAXPsize is 32 bytes If MAXP[3:0] is 0101, then MAXPsize is 40 bytes If MAXP[3:0] is 0110, then MAXPsize is 48 bytes If MAXP[3:0] is 0111, then MAXPsize is 56 bytes If MAXP[3:0] is 1000, then MAXPsize is 64 bytes If MAXP[3:0] is 1000, then MAXPsize is 72 bytes If MAXP[3:0] is 1001, then MAXPsize is 80 bytes If MAXP[3:0] is 1010, then MAXPsize is 80 bytes If MAXP[3:0] is 1011, then MAXPsize is 96 bytes If MAXP[3:0] is 1110, then MAXPsize is 104 bytes If MAXP[3:0] is 1111, then MAXPsize is 120 bytes If MAXP[3:0] is 1111, then MAXPsize is 120 bytes NOTE: EP3CSR and EP4CSR have up to 16 bytes	0001

NOTE: "N" in USBNCSR mean "1 to 4".

17.2.1.12 USBEP0WC

- Base Address: 0x4010_0000
- Address = Base Address + 0x0040, Reset Value = 0x0000_0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																														⊢		
														SVD																RTCN		
														£																WF		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																																
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1_	1_	1_	_					_	_			_	_	_	_	_	_		_	_		_	_	_		P	P	P	P	R

Name	Bit	CPU	Description	Reset Value
RSVD	[31:5]	-	Reserved (Not used)	0
WRTCNT	[4:0]	R	WRiTe CouNT the byte-count number of data in FIFO due to be unloaded by the CPU	0

When OORDY is set for OUT endpoints, USBEP0WC[4:0] maintains the byte-count number of data in FIFO due to be unloaded by the CPU.

17.2.1.13 USBEP1WC

- Base Address: 0x4010_0000
- Address = Base Address + 0x0044, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RSVD								WRTCNT								KSVD								WRICNI			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	R	R	R	R	R	R	R	R	-	-	-	-	-	-	-	-	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:24]	_	Reserved (Not used)	0
WRTCNT	[23:16]	R	Second WRiTe CouNT the byte-count number of data second-saved in FIFO due to be secondly unloaded by the CPU, when There are two packets of MAXP =< 1/2 FIFO size (USBEPNCSR[17:16] is 11b). In case USBEPNCSR[17:16] is 00b or 01b, 0x00 is displayed on USBEPNWC[23:16].	0
RSVD	[15:8]	-	Reserved (Not used)	0
WRTCNT	[7:0]	R	First WRITe CouNT The byte-count number of data first-saved in FIFO due to be firstly unloaded by the CPU, when There are two packets of MAXP =< 1/2 FIFO size (USBEPNCSR[17:16] is 11b). Otherwise, In case There is one packet in FIFO (USBEPNCSR[17:16] == 01b), it means the byte-count number of data in FIFO due to be unloaded by the CPU.	0

NOTE: "N" in USBEPNWC Register means "1 to 4".

When OORDY is set for OUT endpoints, USBEPNWC[7:0] maintains the byte-count number of data in FIFO due to be unloaded by the CPU.

17.2.1.14 USBEP2WC

- Base Address: 0x4010_0000
- Address = Base Address + 0x0048, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RSVD								WRTCNT								KSVU								WRICNI			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	_	_	_	_	_	_	-	R	R	R	R	R	R	R	R	-	-	_	_	_	_	_	-	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:24]	_	Reserved (Not used)	0
WRTCNT	[23:16]	R	Second WRiTe CouNT the byte-count number of data second-saved in FIFO due to be secondly unloaded by the CPU, when There are two packets of MAXP =< 1/2 FIFO size (USBEPNCSR[17:16] is 11b). In case USBEPNCSR[17:16] is 00b or 01b, 0x00 is displayed on USBEPNWC[23:16].	0
RSVD	[15:8]	-	Reserved (Not used)	0
WRTCNT	[7:0]	R	First WRITe CouNT The byte-count number of data first-saved in FIFO due to be firstly unloaded by the CPU, when There are two packets of MAXP =< 1/2 FIFO size (USBEPNCSR[17:16] is 11b). Otherwise, In case There is one packet in FIFO (USBEPNCSR[17:16] == 01b), it means the byte-count number of data in FIFO due to be unloaded by the CPU.	0

NOTE: "N" in USBEPNWC Register means "1 to 4".

When OORDY is set for OUT endpoints, USBEPNWC[7:0] maintains the byte-count number of data in FIFO due to be unloaded by the CPU.

17.2.1.15 USBEP3WC

- Base Address: 0x4010_0000
- Address = Base Address + 0x004C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RSVD								WRICNT								KSVD								WRICNI			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	-	-	_	-	-	-	-	R	R	R	R	R	R	R	R	-	-	-	-	-	-	-	-	R	R	R	R	R	R	R	R

Name Bit Type		Туре	Description	Reset Value		
RSVD	RSVD [31:24] – Res		Reserved (Not used)	0		
WRTCNT [23:16		R	Second WRiTe CouNT The byte-count number of data second-saved in FIFO due to be secondly unloaded by the CPU, when There are two packets of MAXP =< 1/2 FIFO size (USBEPNCSR[17:16] is 11b). In case USBEPNCSR[17:16] is 00b or 01b, 0x00 is displayed on USBEPNWC[23:16].	0		
RSVD	[15:8]	-	Reserved (Not used)	0		
WRTCNT	[7:0]	R	First WRITe CouNT The byte-count number of data first-saved in FIFO due to be firstly unloaded by the CPU, when There are two packets of MAXP =< 1/2 FIFO size (USBEPNCSR[17:16] is 11b). Otherwise, In case There is one packet in FIFO (USBEPNCSR[17:16] == 01b), it means the byte-count number of data in FIFO due to be unloaded by the CPU.	0		

NOTE: "N" in USBEPNWC Register means "1 to 4".

When OORDY is set for OUT endpoints, USBEPNWC[7:0] maintains the byte-count number of data in FIFO due to be unloaded by the CPU.

17.2.1.16 USBEP4WC

- Base Address: 0x4010_0000
- Address = Base Address + 0x0050, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RSVD								WRICNI								KSVD								WRICNI			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	_	_	-	-	-	R	R	R	R	R	R	R	R	-	-	-	-	-	-	-	-	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:24]	_	Reserved (Not used)	0
WRTCNT	[23:16]	R	Second WRiTe CouNT The byte-count number of data second-saved in FIFO due to be secondly unloaded by the CPU, when There are two packets of MAXP =< 1/2 FIFO size (USBEPNCSR[17:16] is 11b). In case USBEPNCSR[17:16] is 00b or 01b, 0x00 is displayed on USBEPNWC[23:16].	0
RSVD	[15:8]	-	Reserved (Not used)	0
WRTCNT	[7:0]	R	First WRITe CouNT The byte-count number of data first-saved in FIFO due to be firstly unloaded by the CPU, when There are two packets of MAXP =< 1/2 FIFO size (USBEPNCSR[17:16] is 11b). Otherwise, In case There is one packet in FIFO (USBEPNCSR[17:16] == 01b), it means the byte-count number of data in FIFO due to be unloaded by the CPU.	0

NOTE: "N" in USBEPNWC Register means "1 to 4".

When OORDY is set for OUT endpoints, USBEPNWC[7:0] maintains the byte-count number of data in FIFO due to be unloaded by the CPU.

17.2.1.17 USBNAKCON1

- Base Address: 0x4010_0000
- Address = Base Address + 0x0060, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NAK Enable				RSVD						NAKEP1				NAKEP2				NAKE P3				NAKE P4				NAKEP5				NAKE P6	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	1	-	١	I	-	-	-	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
W								W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
NAK Enable	[31]	RW	0 = NAK disable 1 = NAK enable If you set this bit, H/W will send NAK packet as a response from IN packet to all endpoints involved in NAKEP1 to NAKEP6 bits.	0
RSVD	[30:24]	_	Reserved (Not used)	0
NAKEP1	[23:20]	RW	1 st EP Address to transmit NAK, Do not set 0.	0
NAKEP2	[19:16]	RW	2 nd EP Address to transmit NAK, Do not set 0.	0
NAKEP3	[15:12]	RW	3 rd EP Address to transmit NAK, Do not set 0.	0
NAKEP4	[11:8]	RW	4 th EP Address to transmit NAK, Do not set 0.	0
NAKEP5	[7:4]	RW	5 th EP Address to transmit NAK, Do not set 0.	0
NAKEP6	[3:0]	RW	6 th EP Address to transmit NAK, Do not set 0.	0

NOTE: You can set each USBNAKCON1 and USBNAKCON2 registers separately. Do not set NAKEP1 to 6 to 0. Setting with 0 will lead to error on EP0.

H/W will send NAK packet if the EP number matched with the one in NAKEP1 to 6 even though EP is already configured in USBEPxCSR and USBEPLNUM.

17.2.1.18 USBNAKCON2

- Base Address: 0x4010_0000
- Address = Base Address + 0x0064, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NAK Enable				RSVD						NAKEP7				NAKEP8				NAKEP9				NAKEP10				NAKEP11				NAKEP12	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	-	-	-	-	-	-	-	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
W								W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
NAK Enable	[31]	RW	0 = NAK disable 1 = NAK enable If you set this bit, H/W will send NAK packet as a response from IN packet to all endpoints involved in NAKEP1 to NAKEP6 bits.	0
RSVD	[30:24]	_	Reserved (Not used)	0
NAKEP7	[23:20]	RW	7 st EP Address to transmit NAK, Do not set 0.	0
NAKEP8	[19:16]	RW	8 nd EP Address to transmit NAK, Do not set 0.	0
NAKEP9	[15:12]	RW	9 rd EP Address to transmit NAK, Do not set 0.	0
NAKEP10	[11:8]	RW	10 th EP Address to transmit NAK, Do not set 0.	0
NAKEP11	[7:4]	RW	11 th EP Address to transmit NAK, Do not set 0.	0
NAKEP12	[3:0]	RW	12 th EP Address to transmit NAK, Do not set 0.	0

NOTE: You can set each USBNAKCON1 and USBNAKCON2 registers separately. Do not set NAKEP7 to12 to 0. Setting with 0 will lead to error on EP0.

H/W will send NAK packet if the EP number matched with the one in NAKEP7 to 12 even though EP is already configured in USBEPxCSR and USBEPLNUM.

17.2.1.19 USBEP0

- Base Address: 0x4010_0000
- Address = Base Address + 0x0080, Reset Value = 0xXXXX_XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												_																n			
											l 0	KSVD															i				
												-															I	Ξ			
U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	_
EPFIFO	[7:0]	RW	FIFO which is used for data IN/OUT	_

NOTE: "N" in USBEPN Register means "1 to 4".

17.2.1.20 USBEP1

- Base Address: 0x4010_0000
- Address = Base Address + 0x0084, Reset Value = 0xXXXX_XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												_																n			
											l 0	KSVD															i				
												-															I	Ξ			
U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	_
EPFIFO	[7:0]	RW	FIFO which is used for data IN/OUT	_

NOTE: "N" in USBEPN Register means "1 to 4".

17.2.1.21 USBEP2

- Base Address: 0x4010_0000
- Address = Base Address + 0x0088, Reset Value = 0xXXXX_XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												`															(þ			
												KSVD															i				
																											•	-			
										0												0									
U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	_
EPFIFO	[7:0]	RW	FIFO which is used for data IN/OUT	_

NOTE: "N" in USBEPN Register means "1 to 4".

17.2.1.22 USBEP3

- Base Address: 0x4010_0000
- Address = Base Address + 0x008C, Reset Value = 0xXXXX_XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												_																n			
											l 0	KSVD															i				
												-															I	Ξ			
U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	_
EPFIFO	[7:0]	RW	FIFO which is used for data IN/OUT	_

NOTE: "N" in USBEPN Register means "1 to 4".

17.2.1.23 USBEP4

- Base Address: 0x4010_0000
- Address = Base Address + 0x0088, Reset Value = 0xXXXX_XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD																EPFIFO			
U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	_
EPFIFO	[7:0]	RW	FIFO which is used for data IN/OUT	_

NOTE: "N" in USBEPN Register means "1 to 4".

17.2.1.24 PROGREG

- Base Address: 0x4010_0000
- Address = Base Address + 0x00A0, Reset Value = 0x0000_X080

31	3	80	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											RSVD												SOF Interrupt Control	USB NAK Control	USB Transaction Clock Selection	USB Wakeup Control	USB Suspend Control	RSVD	Crystal IO Enable	D +/D- direction	D+ value	D- value
U	ι	U	U	U	υ	υ	U	U	U	U	U	U	U	U	U	U	υ	U	U	U	U	0	0	1	0	0	0	0	0	0	0	0
-	-	-	Ι	Ι	-	-	-	-	-	١	Ι	١	-	-	-	-	-	١	-	-	-	R	R	R	R	R	R	١	R	R	R	R
																						W	W	W	W	W	W		W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:11]	-	Reserved (Not used)	—
SOF Interrupt Control	[10:9]	RW	User can select SOF interrupt, CRC Error Interrupt or Clock- Recovery Lock Interrupt for USB SOF interrupt source. 00 = SOF Interrupt (default) 01 = CRC Error Interrupt 10 = Clock-Recovery Lock Interrupt 11 = SOF Interrupt	0
USB NAK Control	[8]	RW	Sending NAK Operation. This bit will be reset whenever SOF packet is received. 0 = Normal operation (default). 1 = NAK response to USB host's IN/OUT/SETUP token.	0
USB Transaction Clock Selection	[7]	RW	This bit is used to select external clock (Ex. resonator) or Internal Clock Recovery. 0 = Internal Clock Recovery is used for USB transaction. 1 = External clock is used for USB transaction (default).	1
USB Wakeup Control	[6]	RW	0 = Wakeup function enable 1 = Wakeup function disable. When PDCON[0] is "1", the S3FN60D can enter stand-by mode. In the same way, users should set PDCON[0] when the S3FN60D enters to USB suspend mode. In this time (USB suspend mode), the S3FN60D can release from USB suspend mode when D+ level is low. If PROGREG[6] is "1", this wakeup function is disabled.	0
USB Suspend Control	[5]	RW	For power down mode in another mode except USB mode, this bit is used. 0 = No operation (default).	0

Name	Bit	Туре	Description	Reset Value
			1 = When the S3FN60D is not USB mode, this bit should be "1" when the S3FN60D enters to power down mode.	
RSVD	[4]	-	Reserved (Not used)	0
Crystal IO Enable	[3]	RW	0 = Disable 1 = Enable	0
D +/D – direction	[2]	RW	User can select to drive D+ and D- line by software or USB (hardware). 0 = D + D - are set to bi-direction (driven by USB, default). 1 = D + D - are set to output only (driven by software).	0
D + value	[1]	RW	This bit is used when user only want to drive D + line by software in force. 0 = If PROGREG[2] = 1, D + drives low (default) 1 = If PROGREG[2] = 1, D + drives high	0
D – value	[0]	RW	This bit is used when user only want to drive D – line by software in force. 0 = If PROGREG[2] = 1, D – drives low (default) 1 = If PROGREG[2] = 1, D – drives high	0

17.2.1.25 FSPULLUP

• Base Address: 0x4010_0000

• Address = Base Address + 0x00B4, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RSVD																Full Speed PULLUP
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	_	_	-	-	-	_	-	-	-	-	-	_	_	_	_	-	_	_	_	-	-	_	-	_	-	_	_	-	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:1]	-	Reserved (Not used)	0
Full Speed PULLUP	[0]	RW	0 = Pull-up resistor floating. 1 = Pull-up resistor 1.5 k Ω . This register is used to notify the attachment of the S3FN60D for a host by attaching pull-up register at D + line.	0

	•	
	•	

18 10-bit Analog-to-Digital Converter

18.1 Overview

ADC is a 10-bit analog-to-digital converter (ADC) with 8-channel analog input mux and internal reference voltage generator using BGR (Band Gap Reference). It converts the analog input signal into 10-bit digital codes at a maximum conversion rate of 50 KSPS. The device is a SAR type monolithic ADC with an on-chip sample-and-hold function and a power down function.

18.1.1 Features

- Resolution: 10-bit
- Maximum conversion rate: 50 KSPS (main ADC clock: 700 kHz)
- Power supply: 3.6 V/1.8 V
- Power consumption: 1.98 mW (Max., normal operation mode) 1 μW (Max., power down mode)
- Input range: 3.6V_{P-P} (single-ended)
- ADC control register (ADCCON)
- 8-channel multiplexed analog data input pins (AIN0-AIN7)
- 10-bit A/D conversion data output register (ADDATA)

18.1.2 Pin Description

Table 10-1 ADC FILL Description	Table 18-1	ADC Pin Description
---------------------------------	------------	---------------------

Pin Name	I/O Type	Pin Description
AIN[7:0]	AI	8-channel analog inputs. (3.6 Vpp Max., single-ended) Max. Current flowing due to finite input resistance is 120 μA during analog input sampling.
AGND	AG	Analog ground

18.2 Functional Description

To initiate an analog-to-digital conversion procedure, at first you must set with alternative function for ADC input enable at port 1, the pin set with alternative function can be used for ADC analog input. And you write the channel selection bits in ADCCON[9:7] to select analog input pins (AIN0-AIN7) and set the conversion start or enable bit, ADCON.0.

During a normal conversion, ADC logic initially sets the successive approximation register to 800H (the approximate half-way point of an 10-bit register). This register is then updated automatically during each conversion step. The successive approximation block performs 10-bit conversions for one input channel at a time. You can dynamically select different channels by manipulating the channel selection bit value (ADCCON[9:7]). To start the A/D conversion, you should set the enable bit, ADCCON.0. When a conversion is completed, ADCCON.0, the start control bit (ADC_EN) is automatically cleared to 0 and the result is dumped into the ADDATA register where it can be read. The A/D converter then enters an idle state. Remember to read the contents of ADDATA before another conversion starts. Otherwise, the previous result will be overwritten by the next conversion result.

18.2.1 Analog Input Type & Range

The analog input is single-ended type (3.6 Vpp).

18.2.2 Reference Voltage

ADC has internal reference voltage generator using BGR. Reference voltage is 1.2 V.

18.2.3 Power down Mode

ADC has several local power down options.

- EN_ADC (Low: ADC input MUX power down)
- EN_BGR (Low: BGR power down)
- STBY (High: ADC core power down)

18.2.4 Wake-up Time

EN_BGR should be high prior to A/D conversion operation for BGR initialization. (wake up time > 4 μ s)

18.2.5 Digital Output Format

The ADC's normal digital output format is offset binary and maintains the previous state at the power down mode.

18.2.6 Input/Output Chart

Index	AIN Input (V)	Digital Output	
0	to 0001xLSB	00 0000 0000	
1	0001xLSB to 0002xLSB	00 0000 0001	
2	0002xLSB to 0003xLSB	00 0000 0010	
:	:	:	
511	0511xLSB to 0512xLSB	01 1111 1111	1LSB
512	0512xLSB to 0513xLSB	10 0000 0000	= (3.6 V)/1024
513	0513xLSB to 0514xLSB	10 0000 0001	= 3.51625 mV (Ideal case)
:	•	:	
1021	1021xLSB to 1022xLSB	11 1111 1101	
1022	1022xLSB to 1023xLSB	11 1111 1110	
1023	1023xLSB to	11 1111 1111	

18.2.7 Conversion Timing

ADC clock is max.700 kHz. ADC clock is set ADCCON[5:1] A/D converter needs at least 20 μs (50 KSPS) for conversion time.

18.2.8 End of Conversion

ADC can generate an interrupt or a DMA request at end of A/D conversion

18.2.9 A/D Converter Control Register (ADCCON)

The A/D converter control register, ADCCON. It has four functions:

- End-of-conversion status detection (bit[0])
- ADC clock selection (bit[5:1])
- A/D operation starts or disable (bit[0])
- Analog input pin selection (bit[9:7])

After a reset, the start bit is turned off. You can select only one analog input channel at a time.

18.3 Functional Block Diagram

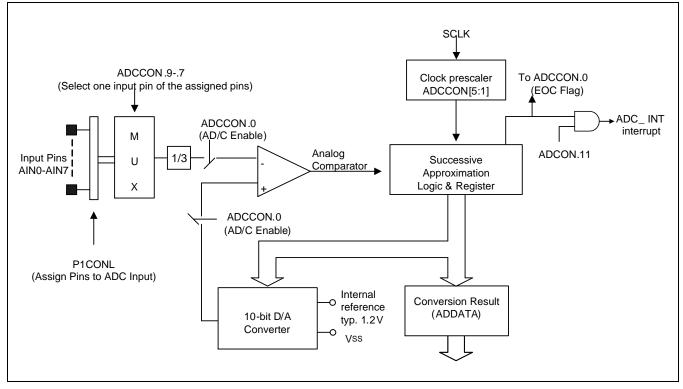


Figure 18-1 A/D Converter Functional Block Diagram

18.4 Timing Diagram

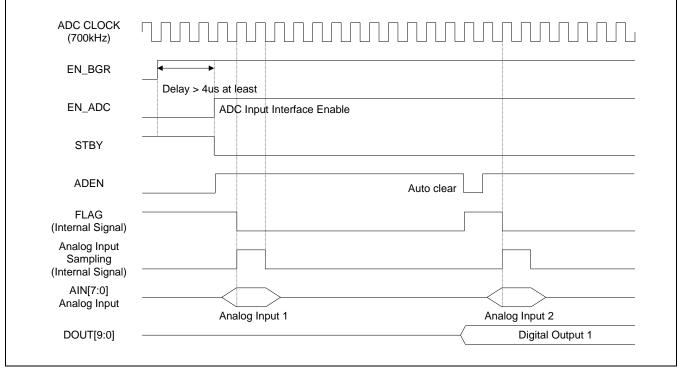


Figure 18-2 A/D Conversion Phase

18.5 Register Description

18.5.1 Register Map Summary

Base Address: 0x4006_0000

Register	Offset	Description	Reset Value
ADCCON	0x0000	A/D converter control register	0x0000_6000
ADDATA	0x0004	A/D converter data register	0x0000_0000
ADC_DMACR	0x0008	DMA control register	0x0000_0000

18.5.1.1 ADCCON

- Base Address: 0x4006_0000
- Address = Base Address + 0x0000, Reset Value = 0x0000_6000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								RSVD									ADC_EN_BGR	ADC_STBY	ADC_EN_ADC	ADC_INT_EN	ADCCK_MASK		ADC_CH_SEL		RSVD			ADC_CLK			ADC_EN
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W	R W	R	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:15]	R	Reserved (Not used)	0000_0000
ADC_EN_BGR	[14]	RW	ADC BandGap control bit 0 = Enable 1 = Disable (Power down)	1
ADC_STBY	[13]	RW	ADC Standby control bit (Initialization & ADC-Core power down) 0 = Disable 1 = Enable (Power down)	1
ADC_EN_ADC	[12]	RW	ADC INPUT channel select enable control bit 0 = Disable (Power down) 1 = Enable	0
ADC_INT_EN	[11]	RW	ADC interrupt enable bit 0 = Disable interrupt 1 = Enable interrupt	0
ADCCK_MASK	[10]	RW	ADC CK enable bit 0 = Disable (Power down) 1 = Enable	0
ADC_CH_SEL	[9:7]	RW	A/D converter channel selection bit 000 = AIN0 001 = AIN1 010 = AIN2 011 = AIN3 100 = AIN4 101 = AIN5 110 = AIN6 111 = AIN7	000
RSVD	[6]	R	Reserved	0
ADC_CLK	[5:1]	RW	Clock source division rate (NOTE)	00

Name	Bit	Туре	Description	Reset Value
			ADC_CLK= SCLK/(Prescaler value[5:1] + 1)	
ADC_EN	[0]	RW	ADC Start control bit (auto cleared when conversion complete) 0 = Disable 1 = Enable (Start)	0

NOTE: ADC clock is max. 700 kHz.

A/D converter needs at least 20 μ s (50 kbps) for conversion time.

18.5.1.2 ADDATA

- Base Address: 0x4006_0000
- Address = Base Address + 0x0004, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																											đ				
										1	KSVD															ŀ					
										1	Y																AUN				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:10]	R	Reserved (Not used)	0
ADDATA	[9:0]	R	A/D converter data register	0

MSB	_	-	-	-	-	.10	.9	.8	.7	.6	.5	.4	.3	.2	.1	.0	LSB

Figure 18-3 A/D Converter Data Register (ADD)

18.5.1.3 ADC_DMACR

- Base Address: 0x4006_0000
- Address = Base Address + 0x0008, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RSVD																ADC_DMAE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:1]	R	Reserved (Not used)	0
ADC_DMAE	[0]	RW	DMA for ADC Enable/Disable Control Bit 0 = Disable 1 = Enable	0

	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	

19 DMA (Direct Memory Access)

19.1 Overview

The S3FN60D has one general direct memory access channels DMA that perform the data transfers between the following source without CPU intervention:

- Both source and destination are in the system bus (Ex, memory to memory transfer. But, Flash memory can only be source)
- Source is in the system bus while destination is in the peripheral bus (Ex, memory to an I/O device transfer)
- Source is in the peripheral bus while destination is in the system bus (Ex, I/O device to memory transfer)
- Both source and destination are in the peripheral bus (Ex, I/O device to I/O device transfer)

The on-chip DMA controller can be started by two ways. One is by software, which is achieved by programming DMA internal register by CPU through system bus. The other is by DMA request from I/O devices such as UART, SPI0/1, IICO/1 and ADC which are achieved by DMA request and acknowledge mechanism between I/O device and DMA. DMA operation can also be stopped and restarted by software. The CPU can recognize when a DMA operation has been completed by software polling or by a DMA interrupt request. The S3FN60D DMA controller can increase or decrease source or destination addresses and conduct 8-bit (byte), 16-bit (half-word) or 32-bit (word) data transfers.

NOTE: For DMA operation of the USB device, the DMA controller should operate as memory to memory transfer mode. In order to transfer EPx FIFO to the memory, set the DMA source address register to the address of EPx FIFO and disable (Fixed) the source address increment bit. In order to transfer the memory to EPx FIFO, set the DMA destination address register to the address of EPx FIFO and disable(Fixed) the destination address increment bit. The transferring size of DMA operation should be less than or equal to the maximum FIFO size of the Endpoint.

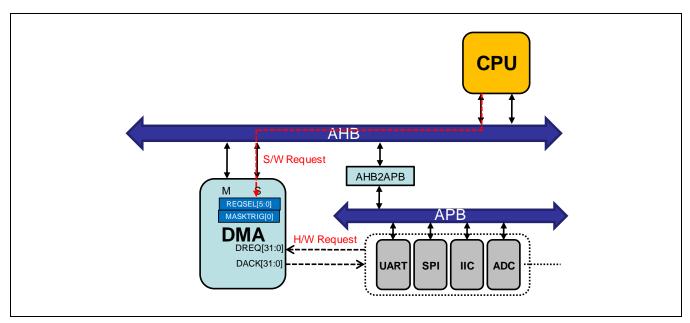


Figure 19-1 DMA Request Mode

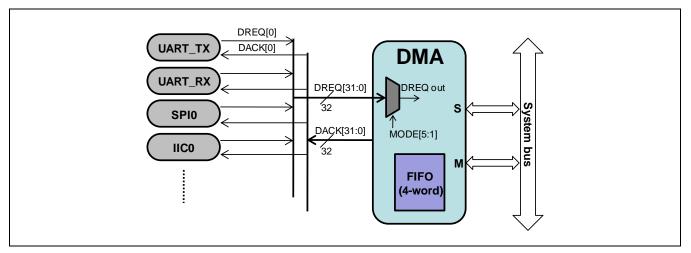


Figure 19-2 DMA Unit Block Diagram

19.2 DMA Operation

The DMA operation can be summarized as follows:

- DMA transfers
- Starting/Ending DMA transfers

19.2.1 DMA Transfers

The DMA (Direct Memory Access) transfers data directly between source and destination. The source or the destination is SRAM, UART, SPI0/1, IIC0/1, ADC, or USB. Flash memory can only be source.

A channel is programmed by writing the DMA control registers, which contain control information such as source address, destination address, and the amount of data.

DMA operation is triggered by two methods. One is S/W request by CPU, and the other is H/W request by I/O device. The following I/O devices can send H/W request to DMA: UART, SPI0/1, IIC0/1 and ADC. In case of USB, DMA should operate as memory to memory transfer mode. Each device is internally connected to the DMA to request DMA service.

19.2.2 Starting/Ending DMA Transfers

DMA starts to transfer data after the DMA receive request from UART, SPI0/1, IIC0/1, ADC or software. When the entire data programmed in DMACNT has been transferred, the DMA become idle. If you want to perform another transfer, the DMA must be reprogrammed. When the same transfer is performed again, the DMA must be reprogrammed.

Before the start of DMA operation, DMA internal registers such as source/destination address, control, and transfer count register should be programmed

In case of S/W request, the DMA operation will start as soon as both ON_OFF and SW_TRIG bit in DMASKTRIG register set to 1.

In case of H/W request, the DMA waits until desired I/O device sends H/W request after ON_OFF bit in DMASKTRIG register set to 1. Only after receiving the H/W request, the DMA operation will start based on DMA configurations.

In DMA, there are five H/W request sources: UART, SPI0/1, IIC0/1 and ADC. The H/W request source should be set only one I/O device at a time. H/W requests from other I/O devices are ignored.

The DMA request mode can be configured by HWSRCSEL bits of DMAREQSEL register.

The details of DMA S/W request operation is as follows:

- State-1: As an initial state, it waits for both ON_OFF and SW_TRIG bits in DMASKTRIG register set to 1.
- State-2: In this state, current transfer counter (CURR_TC) is loaded from the TC[19:0] and SW_TRIG value is automatically cleared.
- State-3: In this state, the atomic operation of DMA handled by sub-FSM is initiated. The sub-FSM reads the data from the source address and then writes it to destination address. In this operation, data size (byte, half-word, or word) and transfer size (single or burst) are considered. This operation is repeated until the current transfer counter (CURR_TC) reaches 0 in Continuous service mode (SERVMODE set to 1), while performed only once in a Single service mode. The main FSM counts down the CURR_TC when the sub_FSM finishes each atomic operation.

The details of DMA H/W request operation can be explained based-on the following 4-state FSM (finite state machine):

- State-1: As an initial state, it waits for ON_OFF bit in DMASKTRIG register set to 1
- State-2: In this state, it waits for DMA REQ from desired I/O device. Desired I/O device is determined by HWSRCSEL bits of DMAREQSEL register
- State-3: In this state, DMA ACK becomes high and current transfer counter (CURR_TC) is loaded from the TC[19:0] register. Note that DMA ACK becomes high and remains high until it becomes low later.
- State-4: In this state, the atomic operation of DMA handled by sub-FSM is initiated. The sub-FSM reads the
 data from the source address and then writes it to destination address. In this operation, data size (byte, half
 word, or word) and transfer size (single or burst) are considered. This operation is repeated until the current
 transfer counter (CURR_TC) reaches 0 in Continuous service mode (SERVMODE set to 1), while performed
 only once in a Single service mode. The main FSM (this FSM) counts down the CURR_TC when the subFSM finishes each atomic operation.

In addition, this main FSM asserts the INT REQ signal when CURR_TC becomes 0 and the interrupt setting of INT is set to 1. In addition, the DMA ACK becomes low if one of the following conditions are met.

- 1) CURR_TC becomes 0 in Continuous service mode, or
- 2) Atomic operation finishes in the Single service mode

Note that in the Single service mode, these three states (State-2 to State-4) of main FSM are performed once, then stops, and waits for another DMA REQ. And if another DMA REQ occurs, all the three states are repeated. Therefore, DMA ACK is asserted and then de-asserted for each atomic transfer. In contrast, in the Continuous service mode, main FSM waits at state-3 until CURR_TC becomes 0. Therefore, DMA ACK is asserted during all the transfers and then deasserted when TC reaches 0.

However, INT REQ is asserted only if CURR_TC becomes 0 regardless of the service mode (Single service mode or Continuous service mode).

The DMA also provides a temporary buffer which allows multiple transfers to enhance the bus utilization as well as transfer speed. Specifically, S3FN60D has a 4-word FIFO-type buffer to support the 4-word burst transfer during DMA operation. For example, the DMA operation between memories can be done by a 4-word burst write followed by a 4-word burst read.

19.3 Operation Mode-H/W Request

19.3.1 Single Service Mode

The Single service mode needs DMA request and acknowledge handshake every atomic DMA read and write operation.

When the DMA request signal goes high, the DMA controller indicates the acknowledge to the I/O device by asserting the DMA acknowledge signal high. During the first high level period of the DMA acknowledge signal, a DMA read cycle will be initiated. After the DMA read cycle, the next DMA write cycle follows.

The DMA ACK signal is asserted until the atomic operation (i.e., read followed by write operation) is finished. The INT REQ signal is asserted only if current transfer counter (CURR_TC) becomes 0.

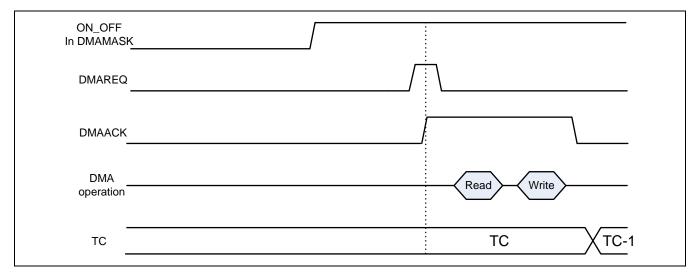


Figure 19-3 Single Transfer in Single Service Mode

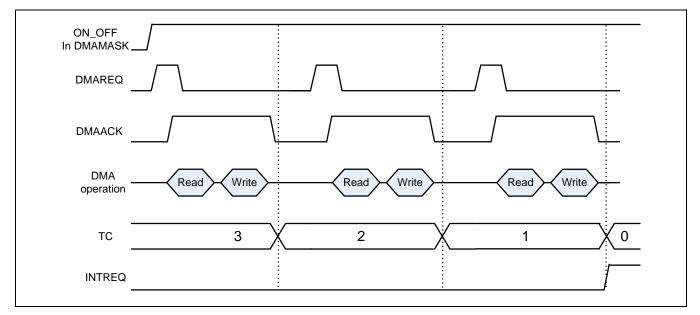


Figure 19-4 Sequential Transfer in Single Service Mode

19.3.2 Continuous Service Mode

The Continuous service mode means that the specified number of DMA operations, i.e., number of DMA operations based on transfer count, will be initiated by a single activation of DMA request, and will proceed without further activation of DMA requests. The below figure shows how the continuous mode proceeds. The DMAACK signal remains high until the end of whole DMA operations.

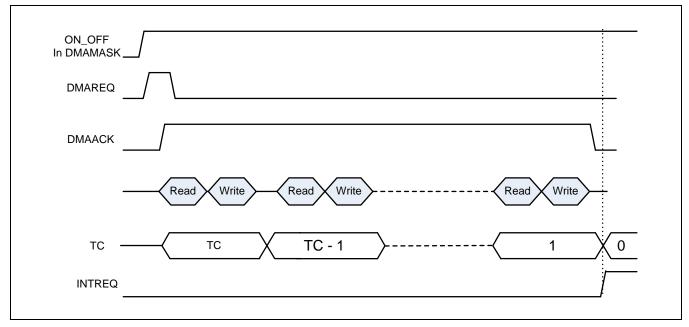


Figure 19-5 Continuous Service Mode

19.4 DMA Transfer Size

There are two types of DMA transfer size (Single transfer size, Burst transfer size). Unlike DMA request/acknowledge protocol, the DMA transfer size defines the number of read/write per unit transfer as shown in the following table.

DMA Transfer Size	Read/Write
Single transfer	1 unit read, then 1 unit write
Burst transfer	4 unit burst read, 4 unit burst write

NOTE: Unit is Byte (8-bit), Half Word (16-bit), or Word (32-bit).

19.4.1 Single Transfer Size

The single transfer mode means that the paired DMA read/write cycle is performed per each DMA request as shown in *Figure 19-3*.

19.4.2 Burst (4-unit) Transfer Size

The burst (4-unit) transfer mode means that the successive 4-unit DMA read cycles is followed by the successive 4-unit DMA write cycles as shown in *Figure 19-6.*

DMAREQ		
DMAACK		_
	Read Read Read Write Write Write Write	

Figure 19-6 Burst (4-unit) Transfer Size

19.5 DMA Operation Sequence

19.5.1 S/W Request Sequence

- 1. DMA Operation Condition Setting
- Set source address and control (DISRC, DISRCC)
- Set destination address and control (DIDST, DIDSTC)
- Set DMA control register (interrupt, operation mode, transfer width, burst mode, transfer count)
- 2. DMA Request Set, DMA Enable, and DMA Start
- Set DMA request selection register (DMAREQSEL[5:0] = 0 (S/W))
- Set DMA Enable and Start (DMASKTRIG: ON_OFF = 1, SW_TRIG = 1)
- When SW_TRIG is set to "1", the DMA will start operation based on DMA configurations described in 1. The SW_TRIG is cleared automatically.
 - Operation mode (Single service mode)
 - After the DMA finishes atomic transaction (single or burst of length four) and decrease Current Transfer Count (CURR_TC) by 1, DMA stops and waits until another SW_TRIG is set to "1"
 - Repeat i until CURR_TC reaches to zero
- Operation mode (Continuous service mode)
 - The DMA finishes whole DMA transactions (DMACNT x atomic transaction) without further DMA request.

19.5.2 H/W Request Sequence

- 1. DMA Operation Condition Setting
- Set source address and control (DISRC, DISRCC)
- Set destination address and control (DIDST, DIDSTC)
- Set DMA control register (interrupt, operation mode, transfer width, burst mode, transfer count)
- 2. DMA Request Set, DMA Enable
- Set DMA request selection register (DMAREQSEL: HWSRCSEL (5'b00001 (UART) to 5'b01001 (SUB)),SWHW_SEL (1))
- We can select desired I/O device by setting HWSRCSEL. H/W requests from other devices are ignored.
- Set DMA Enable (DMASKTRIG: ON_OFF = 1)
- 3. DMA Start
- When the DMA receives H/W request from desired I/O device, the DMA operation will start automatically based on DMA configurations described in 1
 - Operation mode (Single service mode)
 - After the DMA finishes atomic transaction (single or burst of length four) and decrease Current Transfer Count (CURR_TC) by 1, DMA stops and waits until another H/W request from desired I/O device
 - Repeat i until CURR_TC reaches to zero
 - Operation mode (Continuous service mode)
 - $\circ~$ The DMA finishes whole DMA transactions (DMACNT \times atomic transaction) without further H/W request.

19.6 Register Description

19.6.1 Register Map Summary

Base Address: 0x4003_0000

Register	Offset	Description	Reset Value
DISRC	0x0000	DMA initial source register	0x0000_0000
DISRCC	0x0004	DMA initial source control register	0x0000_0000
DIDST	0x0008	DMA initial destination register	0x0000_0000
DIDSTC	0x000C	DMA initial destination control register	0x0000_0000
DMACON	0x0010	DMA control register	0x0000_0000
DSTAT	0x0014	DMA count register	0x0000_0000
DCSRC	0x0018	DMA current source register	0x0000_0000
DCDST	0x001C	DMA current destination register	0x0000_0000
DMASKTRIG	0x0020	DMA mask trigger register	0x0000_0000
DMAREQSEL	0x0024	DMA request selection register	0x0000_0000

19.6.1.1 DISRC

- Base Address: 0x4003_0000
- Address = Base Address + 0x0000, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD																S_ADDR															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31]	R	Reserved (Not used)	0
S_ADDR	[30:0]	RW	These bits are the base address (start address) of source data to transfer.	0

19.6.1.2 DISRCC

• Base Address: 0x4003_0000

• Address = Base Address + 0x0004, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RSVD																S_INC
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																															W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:1]	R	Reserved (Not used)	0
S_INC	[0]	RW	This bit is used to select whether or not the address is increased. 0 = Increment 1 = Fixed If it is 0, the address is increased by its data size after each transfer in burst and single transfer mode. If it is 1, the address is not changed after the transfer.	0

19.6.1.3 DIDST

- Base Address: 0x4003_0000
- Address = Base Address + 0x0008, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD																D_ADDR															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31]	R	Reserved (Not used)	0
D_ADDR	[30:0]	RW	These bits are the base address (start address) of destination for the transfer	0

19.6.1.4 DIDSTC

- Base Address: 0x4003_0000
- Address = Base Address + 0x000C, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RSVD																D_INC
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																															W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:1]	R	Reserved (Not used)	0
D_INC	[0]	RW	 Bit[0] is used to select the address increment. 0 = Increment 1 = Fixed If it is 0, the address is increased by its data size after each transfer in burst and single transfer mode. If it is 1, the address is not changed after the transfer. 	0

19.6.1.5 DMACON

- Base Address: 0x4003_0000
- Address = Base Address + 0x0010, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RSVD	INT	TSZ	SERVMODE			RSVD		RELOAD		DSZ										Ŭ	2									
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	W	W	W	W					W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:30]	R	Reserved (Not used)	0
INT	[29]	RW	Enable/Disable the interrupt setting for DMA 0 = DMA interrupt is disabled. You have to look the transfer count in the status register by using bit polling method 1 = Interrupt request is generated when all the transfer is done (i.e., CURR_TC becomes 0).	0
TSZ	[28]	RW	Select the transfer size of an atomic transfer (i.e., transfer performed at each time DMA owns the bus before releasing the bus). 0 = A unit transfer of which size is defined by DSZ is performed. 1 = A burst transfer of which size is 4 times of DSZ is performed.	0
SERVMODE	[27]	RW	 Select the service mode between Single service mode and Continuous service mode for DMA operation. 0 = Single Service Mode is selected in which after each atomic transfer (single or burst of length four) DMA stops and waits for another DMA request. 1 = Continuous Service Mode is selected in which one request gets atomic transfers to be repeated until the transfer count reaches to 0. Here, note that even in the Continuous service mode, DMA releases the bus after each atomic transfer and then tries to re-get the bus to prevent starving of other bus masters. 	0
RSVD	[26:23]	R	Reserved (Not used)	0
RELOAD	[22]	RW	Set the reload on/off option. 0 = Auto reload is performed when a current value of transfer count becomes 0 (i.e., all the required transfers are performed). Auto reload is useful for repetition of	0

SAMSUNG ELECTRONICS

Name	Bit	Туре	Description	Reset Value
			same pattern of DMA operation loading same address and count. 1 = DMA channel is turned off when a current value of transfer count becomes 0. The channel on/off bit (DMASKTRIG[1]) is set to 0 to prevent unintended further start of new DMA operation	
DSZ	[21:20]	RW	Data size to be transferred. 00 = Byte 01 = Half word 10 = Word 11 = Reserved	0
тс	[19:0]	RW	Initial transfer count (or transfer beat). Note that the actual number of bytes that are transferred is computed by the following equation: $DSZ \times TSZ \times TC$, where DSZ, TSZ, and TC represent data size (DMACON[21:20]), transfer size (DMACON[28]), and initial transfer count, respectively. For example, if 256 bytes is transferred to any site with burst mode and word-size transferring, TC has 16. Real transfer count is 16×4 (word-size) $\times 4$ (burst mode).	0

NOTE: There are two masters in N60D system; The CPU and the DMA: If anyone between CPU and DMA generates transaction when the bus is idle, the master gets bus ownership, and releases the bus when the transaction is done

- If both CPU and DMA generate transactions simultaneously, the CPU gets bus ownership and transfers data. The DMA should wait for being released the bus by the CPU.

- If the DMA is configured to operate 100 transfers with each burst4, the DMA gets and releases bus ownership every burst4 transfer. Therefore the CPU can intrude into DMA operation and transfer data.

19.6.1.6 DSTAT

- Base Address: 0x4003_0000
- Address = Base Address + 0x0014, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			RSVD				MPU_ABORT		KSVD		STAT										CLIRR TC										
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:25]	R	Reserved (Not used)	0
MPU_ABORT	[24]	R	 Status of this DMA controller. 0 = MPU abort doesn't occur 1 = MPU abort occur. MPU_ABORT bit is set to below case. When Sum of DISRC and TC is set over MPU protection region. When DIDST is set to MPU_SFR region. (MPU_SFR region is only written to Region 0 and 1. This bit is affected when DMA channel on/off bit is set. For the details, refer to chapter 23. MPU. 	0
STAT	[21:20]	R	Status of this DMA controller. 00 = It indicates that DMA controller is ready for another DMA request. 01 = It indicates that DMA controller is busy for transfers.	0
CURR_TC	[19:0]	R	Current value of transfer count. Note that transfer count is initially set to the value of DMACON[19:0] register and decreased by one at the end of every atomic transfer.	0

19.6.1.7 DCSRC

- Base Address: 0x4003_0000
- Address = Base Address + 0x0018, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD																CURR_SRC															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31]	R	Reserved (Not used)	0
CURR_SRC	[30:0]	R	Current source address from which data being transferring currently	0

19.6.1.8 DCDST

- Base Address: 0x4003_0000
- Address = Base Address + 0x001C, Reset Value = 0x0000_0000

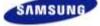
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD																CURR_DST															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31]	R	Reserved (Not used)	0
CURR_DST	[30:0]	R	Current destination address to which data is being transferred currently	0

SAMSUNG ELECTRONICS

19.6.1.9 DMASKTRIG

• Base Address: 0x4003_0000


• Address = Base Address + 0x0020, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														RSVD															STOP	ON_OFF	SW_TRIG
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:3]	R	Reserved (Not used)	0
STOP	[2]	RW	Stop the DMA operation. 1 = DMA stops as soon as the current atomic transfer ends. If there is no current running atomic transfer, DMA stops immediately. The CURR_TC, CURR_SRC, CURR_DST will be 0. NOTE: Due to possible current atomic transfer, "stop" may take several cycles. The finish of "stopping" operation (i.e., actual stop time) can be detected by waiting until the channel on/off bit (DMASKTRIG[1]) is set to off. This stop is "actual stop".	0
ON_OFF	[1]	RW	DMA channel on/off bit. 0 = DMA channel is turned off. (DMA request to this channel is ignored.) 1 = DMA channel is turned on and the DMA request is handled. This bit is automatically set to off if we set the DMACON[22] bit to "no auto reload" and/or STOP bit of DMASKTRIG to "stop". Note that when DMACON[22] bit is "no auto reload", this bit becomes 0 when CURR_TC reaches 0. If the STOP bit is 1, this bit becomes 0 as soon as the current atomic transfer finishes. This bit should be set to "1" to start DMA operation. NOTE: This bit should not be changed manually during DMA operations (i.e., this has to be changed only by using DMACON[22] or STOP bit.)	0
SW_TRIG	[0]	RW	Trigger the DMA channel in S/W request mode. 1 = It requests a DMA operation to this controller. This bit should be set to "1" to start DMA operation. When DMA operation starts, this bit is cleared automatically.	0

NOTE: You can freely change the values of DISRC register, DIDST registers, and TC field of DMACON register. Those changes take effect only after the finish of current transfer (i.e., when CURR_TC becomes 0). On the other hand, any change made to other registers and/or fields takes immediate effect. Therefore, be careful in changing those registers and fields.

19.6.1.10 DMAREQSEL

- Base Address: 0x4003_0000
- Address = Base Address + 0x0024, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													KSVD															HWSRCSEL			SWHW_SEL
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:6]	R	Reserved (Not used)	0
HWSRCSEL	[5:1]	RW	Select DMA request source for each DMA. DMA H/W request source is below table. These bits have meanings if and only if H/W request mode is selected by DMAREQSEL[0]. Refer to below table	0
SWHW_SEL	[0]	RW	Select the DMA source between software (S/W request mode) and hardware (H/W request mode). 0 = S/W request mode is selected and DMA is triggered by setting SW_TRIG bit of DMASKTRIG control register. 1 = DMA source selected by bit[5:1] is used to trigger the DMA operation	0

19.6.1.10.1 HWSCRSEL Bit Table[5:1]

Peripheral	Binary	Decimal
UART_TX	00000	0
UART_RX	00001	1
Reserved	00010 to 01001	2 to 9
SPI0_TX	01010	10
SPI0_RX	01011	11
SPI1_TX	01100	12
SPI1_RX	01101	13
Reserved	01110 to 10001	14 to 17
I2C0_TX	10010	18
I2C0_RX	10011	19
I2C1_TX	10100	20
I2C1_RX	10101	21
ADC	10110	22
Reserved	10111 to 11111	23 to 31

	•	
	•	
	•	
	•	

20 Embedded Flash Memory

20.1 Overview

The S3FN60D has an internal 128 Kbyte program FLASH memory. A single flash load operation consists of an erase and a write operation. Erase operation is performed in a page (256 byte) and a sector (8 Kbyte). User can program the data in a flash memory area any time you want. The S3FN60D's enabled 128 Kbyte memory has two operating features. Writing Operation is performed in a word (32-bit).

- User Program Mode
- Tool Program Mode

20.1.1 Flash ROM Configuration

The S3FN60D flash memory consists of 16sectors. Each sector consists of 8 Kbytes. So, the total size of flash memory is 16×8 Kbytes (128 KB). User can erase the flash memory by a sector unit or a page (256 Byte) unit at a time and write the data into the flash memory by a word (32-bit) unit at a time.

- 128 Kbyte Internal flash memory
- Sector size: 8 KBytes
- Page size: 256 Bytes
- 10years data retention
- Word (32-bit) programmable
- User programmable by "Store" instruction
- External serial programming support
- Endurance: 10,000 Erase/Program cycles (Min.)

20.2 Register Description

20.2.1 Register Map Summary

Base Address: 0x4001_0000

Register	Offset	Description	Reset Value
FMCON	0x0000	FLASH memory control register	0x0000_0000
FMKEY	0x0004	FLASH program/erase key register	0x0000_0000
FMADDR	0x0008	Flash sector/page erase address register	0x0000_0000

20.2.1.1 FMCON

- Base Address: 0x4001_0000
- Address = Base Address + 0x0000, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												KSVD														Mode Selection			RSVD		Operation Start
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W	R W	R W	R W	R W	R W	R W	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	0
Mode Selection	[7:4]	RW	Flash Memory Mode Selection Bits 0101 = Programming mode 1010 = Sector erase mode 1001 = Page erase mode Others = Not used for S3FN60D	0000
RSVD	[3:1]	RW	Reserved (Not used)	000
Operation Start	[0]	RW	Flash Erase Operation Start Bit 0 = Erase operation stop 1 = Erase operation start (This bit will be cleared automatically just after erase operation)	0

20.2.1.2 FMKEY

- Base Address: 0x4001_0000
- Address = Base Address + 0x0004, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																												_			
											ļ Q	KSVD															ĺ	FMKE			
											L	T															i	I			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																								W	W	W	W	W	W	W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:8]	R	Reserved (Not used)	0
FMKEY	[7:0]	RW	Key for flash program/erase access bits	0

The FMKEY register is used for a safe operation of the flash memory. This register will protect undesired erase or program operation from malfunctioning of CPU caused by an electrical noise. After reset, the user-programming mode is disabled, because the value of FMKEY is "0x00000000" by reset operation. If necessary to operate the flash memory, you can use the user programming mode by setting the value of FMKEY to "0x5A". The other value of "0x5A", user program mode is disabled.

20.2.1.3 FMADDR

- Base Address: 0x4001_0000
- Address = Base Address + 0x0008, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															۵	<u> </u>															
																2))															
															2	-															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
W	w	w	W	W	W	w	w	w	w	W	w	w	W	W	W	W	w	W	w	w	w	W	W	W	W	W	W	W	W	W	w

Name	Bit	Туре	Description	Reset Value
FMADDR	[31:0]	RW	Flash sector/page erase address register	0

20.3 Programming

A flash memory is programmed in one-word (32-bit) unit after sector erase. The write operation of programming starts by "Store" instruction.

The Sector Erase Procedure in User Program Mode

- 1. Set Flash Memory Key Register (FMKEY) to "0x5A".
- 2. Set Flash Memory Address Register (FMADDR).
- 3. Set Flash Memory Control Register (FMCON) to "10100000B".
- 4. Call the function "CSP_FlashEraseStart" that is below example assembler code.
- 5. Set Flash Memory KEY Register (FMKEY) to "0x00".
- 6. Set Flash Memory Control Register (FMCON) to "0x00".

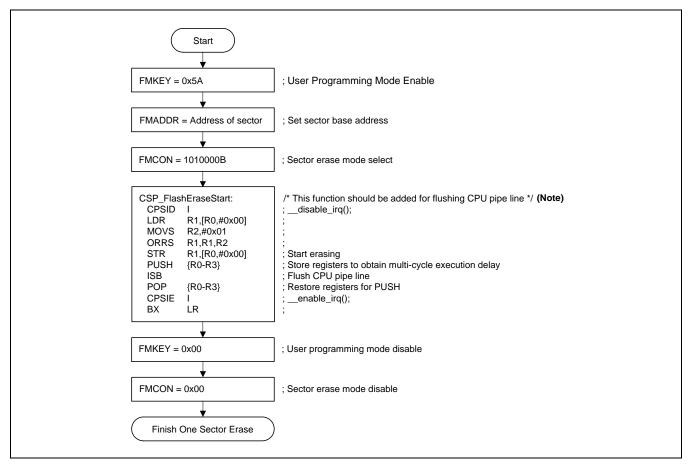


Figure 20-1 Sector Erase Flowchart in User Program Mode

NOTE: S3FN60D flash controller erases a page or a sector in state of CPU BUS hold. It takes 4 cycles from erase starting time to CPU BUS hold time. If CPU read data from a flash memory before holding CPU BUS according to Cortex-M0 pipe line, the data will be corrupted. For a exact operation without flash data corruption, assemble code is recommended because C code can be changed temporary depending on optimization level of compilers.

The Page Erase Procedure in User Program Mode

- 1. Set Flash Memory Key Register (FMKEY) to "0x5A".
- 2. Set Flash Memory Address Register (FMADDR).
- 3. Set Flash Memory Control Register (FMCON) to "10010000B".
- 4. Call the function "CSP_FlashEraseStart" that is below example assembler code.
- 5. Set Flash Memory KEY Register (FMKEY) to "0x00".
- 6. Set Flash Memory Control Register (FMCON) to "0x00".

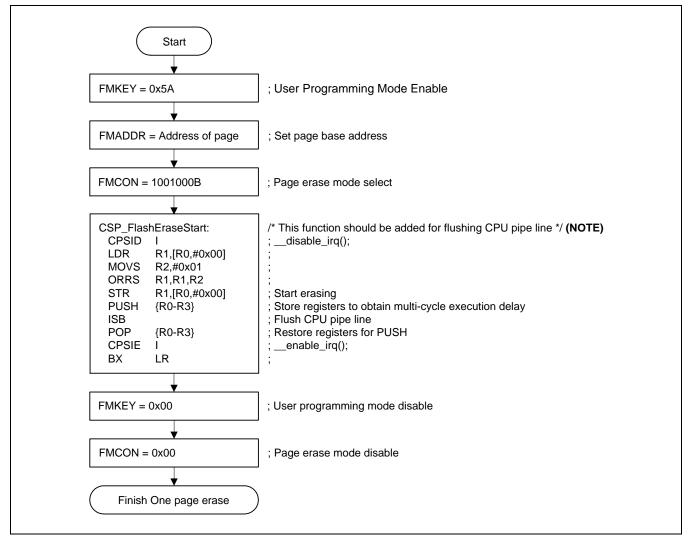


Figure 20-2 Page Erase Flowchart in User Program Mode

NOTE: S3FN60D flash controller erases a page or a sector in state of CPU BUS hold. It takes 4 cycles from erase starting time to CPU BUS hold time. If CPU read data from a flash memory before holding CPU BUS according to Cortex-M0 pipe line, the data will be corrupted. For a exact operation without flash data corruption, assemble code is recommended because C code can be changed temporary depending on optimization level of compilers.

The Program Procedure in User Program Mode

- 1. Must erase target sectors before programming.
- 2. Set Flash Memory KEY Register (FMKEY) to "0x5A".
- 3. Set Flash Memory Control Register (FMCON) to "0101000XB".
- 4. Load transmission data to flash memory location area on "Store" instruction
- 5. Set Flash Memory KEY Register (FMKEY) to "0x00".
- 6. Set Flash Memory Control Register (FMCON) to "0x00".

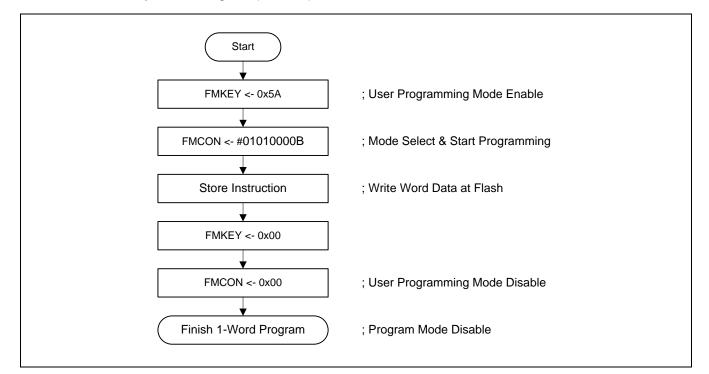


Figure 20-3 1-word Program Flowchart in a User Program Mode

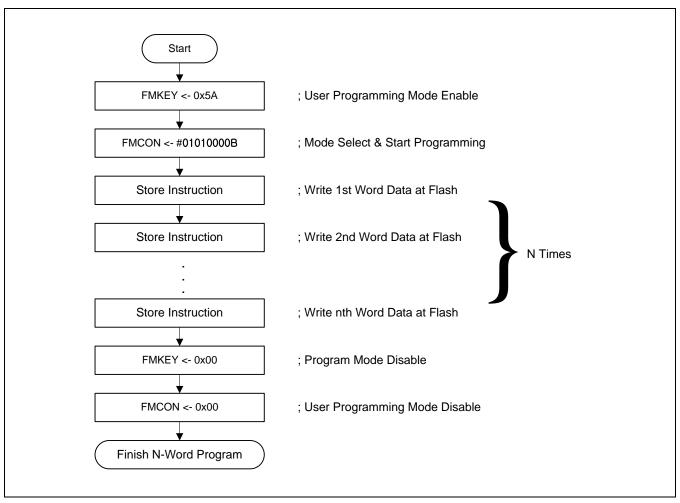


Figure 20-4 N-word Program Flowchart in a User Program Mode

	•	
	•	
	•	
	•	

21 Memory Protection Unit

21.1 Overview

The Memory Protection Unit (MPU) enables user to use partition memory and set individual protection attributes of each partition. MPU allows that some special partitions can protect themselves from direct access of application codes which are generated from other partitions.

Each partition is called "Region" and MPU allows to divide memory into 6 regions, Sys Region, Region 0, 1, 2 & 3 for FLASH memory and Region 4 for SRAM, and each has its own access permission attributes. The attribution of each Region cannot be configured by software codes and the attribute is automatically set as MPU is enabled.

If access against the attribute condition occurs, chip automatically generates MPUINT (Core interrupt Vector: 0x0000_0040) interrupt and sets a specific bit of MPU_IRQ_MON register.

21.2 Feature

21.2.1 Region Definition

- MPU has 6 Regions and each Region has its own start address and end address.
- The start and end address are configured by MPU SFR registers but those of sys region, Flash and SRAM are fixed with hardwire.
- System region is reserved for core interrupt vector (0x0000_0000H to 0x0000_0040H), system interrupt vector (0x0000_0040H to 0x0000_00C0H) and smart option ROM cell (0x0000_00C0H to 0x0000_00C8H). System region cannot read or write other regions except to region 4.
- MPUEND_R0 address is same as MPUSTART_R1 so that there is not spare address between region 0 and region 1. Other regions(MPUEND_R1 to MPUSTART_R2, MPUEND_R1 to MPUSTART_R3) are the same.

Region (Alias)	Description	Start Address	End Address	Dedicated Memory
Region 4 (R4)	The highest numbered region	0x1000_0000 (fixed)	0x1000_2000 (fixed)	SRAM
Region 3 (R3)	The fourthly low numbered region	MPUSTART_R3	0x0002_0000 (fixed)	
Region 2 (R2)	The thirdly low numbered region	MPUSTART_R2	MPUEND_R2	
Region 1 (R1)	The secondly low numbered region.	MPUSTART_R1	MPUEND_R1	FLASH
Region 0 (R0)	The lowest numbered region.	0x0000_00C8 (fixed)	MPUEND_R0	
Sys Region (RS)	System region for Interrupt vector tables and smart options	0x0000_0000 (fixed)	0x0000_00C8 (fixed)	

Table 21-1 Region Definition

21.2.2 Region to Region ACCESSBILITY

As long as MPU (MPUCON[0]) is active, the accessibility between each Regions is valid. If not, MPU is not operative.

MPU function will be set automatically as <u>Figure 21-1</u> if MPUCON.0 bit is set to high (it means MPU enable). If MPUCON.0 bit is set to low (it means MPU disable), all memory regions are accessible.

Basically, MPU has the accessibility which defines like

- Low Numbered Region to High Numbered Region (Low numbered region can read and write to high numbered region)
- High Numbered Region to Low level Region (High numbered region can only read to low numbered region)

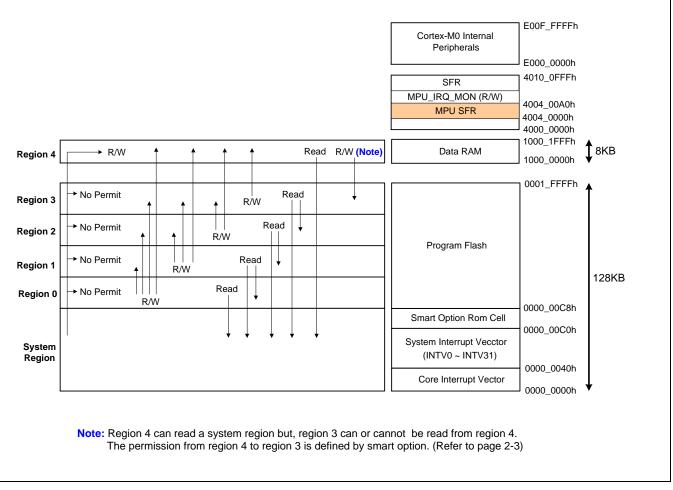


Figure 21-1 MPU Enabled Access Permission Configuration

21.2.2.1 Region Accessibility Define by Smart Option Setting

- When used from region 0 to region 2
- 1. RegionOption should be set to "0"
- 2. DebugAddr should be set to region 2 end address
- 3. RegionEndAddr should be set to region 1 end address

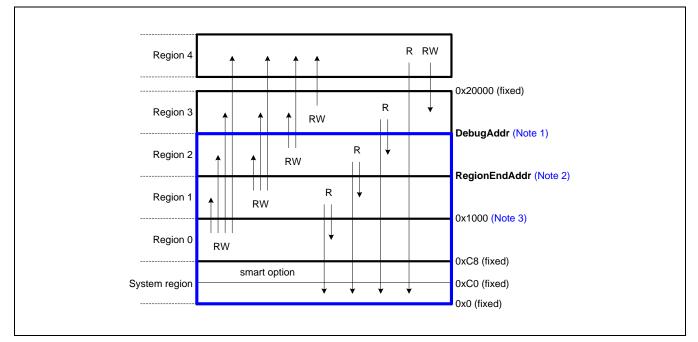


Figure 21-2 MPU Enabled Access Permission Configuration

NOTE:

- 1. This address is set to smart option DebugAddr bits (0xC0 [17:9])
- 2. This address is set to smart option RegionEndAddr bits (0xC0 [8:0])
- 3. 0x1000 is a initial value of MPUEND_R0. This address can be changed from region0 or region1 code.

Code	RS	R0	R1	R2	R3	R4	SFR	MPU_SFR	CPU_PERI	INVALID
RS	RW	Abort	Abort	Abort	Abort	RW	RW	RO MPU_MON (RW)	RW	Abort
R0	RO	RW	RW	RW	RW	RW	RW	RW	RW	Abort
R1	RO	RO	RW	RW	RW	RW	RW	RW	RW	Abort
R2	RO	Abort	RO	RW	RW	RW	RW	RO	RW	Abort
R3	RO	Abort	Abort	RO	RW	RW	RW	RO	RW	Abort
R4	RO	Abort	Abort	Abort	RO	RW	RW	RO	RW	Abort

Table 21-2	Region	Accessibility
------------	--------	---------------

SAMSUNG ELECTRONICS

21.2.2.2 Region Accessibility Define by Smart Option Setting

- When used from region 0 to region 3
- 1. RegionOption should be set to "1"
- 2. DebugAddr should be set to region 3 end address
- 3. RegionEndAddr should be set to region 2 end address

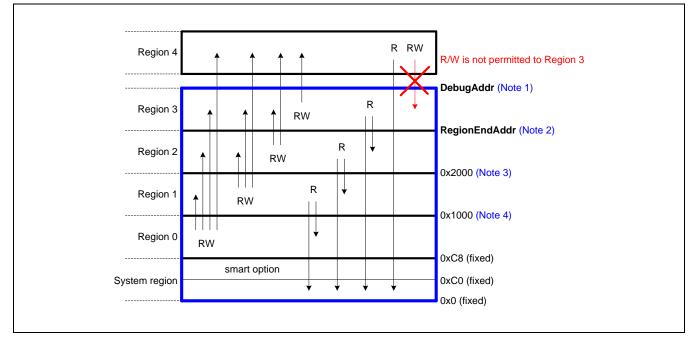


Figure 21-3 MPU Enabled Access Permission Configuration

NOTE:

- 1. This address is set to smart option DebugAddr bits (0xC0 [17:9])
- 2. This address is set to smart option RegionEndAddr bits (0xC0 [8:0])
- 3. 0x2000 is a initial value of MPUEND_R1. This address can be changed from region0 or region1 code.
- 4. 0x1000 is a initial value of MPUEND_R0. This address can be changed from region0 or region1 code.

Code	RS	R0	R1	R2	R3	R4	SFR	MPU_SFR	CPU_PERI	INVALID
RS	RW	Abort	Abort	Abort	Abort	RW	RW	RO MPU_MON (RW)	RW	Abort
R0	RO	RW	RW	RW	RW	RW	RW	RW	RW	Abort
R1	RO	RO	RW	RW	RW	RW	RW	RW	RW	Abort
R2	RO	Abort	RO	RW	RW	RW	RW	RO	RW	Abort
R3	RO	Abort	Abort	RO	RW	RW	RW	RO	RW	Abort
R4	RO	Abort	Abort	Abort	Abort	RW	RW	RO	RW	Abort

Table 21-3 Region Accessibility

SAMSUNG ELECTRONICS

21.3 MPU Abort Cases

If the accessibility between each regions is not observed, MPU generates Abort in order to protect data codes and IRQ occurs as long as NVIC is enabled.

MPU generates only one IRQ handler but its sources are several cases. Refer to the <u>Table 21-4</u>. And these signals set to MPU_IRQ_MON (0x4004_00A0) for monitoring MPU IRQ sources. Make sure that MPU should be set in advance and refer to the <u>Table 21-5</u> and <u>Table 21-7</u> for more specific cases

Abortion (Alias)	Description
DMA_INVAL_ABORT (-)	When Mem to Mem Copy operation of DMA occurs between not accessible Regions, DMA_INVAL_ABORT occurs.
MPUSFR_WRITE_ABORT (SFR_W_ABT)	When MPUSFR register is written by not privileged regions ^(NOTE) , MPUSFR_WRITE_ABORT occurs. But all region can write and read MPU_MON_REG (0x4004_00A0). NOTE: Not privileged regions sys region, region 2, region 3 and region 4.
REGION_WRITE_ABORT (REG_W_ABT)	When high numbered region write to just one level lower numbered region, REGION_WRITE_ABORT occurs (NOTE). Ex) When Region 3 write region 2, REGION_WRITE_ABORT occurs. When Region 3 read region 2, REGION_WRITE_ABORT not occurs. NOTE: Just one level lower numbered region region 4 to region 3, region 3 to region 2, region 2 to region 1, region 1 to region 0.
HIGH_TO_LOW_ABORT (H2L_ABT)	 Two Cases of HIGH_TO_LOW_ABORT. When High numbered region write or read to lower numbered region, HIGH_TO_LOW_ABORT occurs. Ex) When region 3 write or read region 1, HIGH_TO_LOW_ABORT occurs, but REGION_WRITE_ABORT does not occur. When sys region access (W/R) to other regions, except region 4, HIGH_TO_LOW_ABORT occurs.
SYS_WRITE_ABORT (SYS_W_ABT)	When all region write sys region, SYS_WRITE_ABORT occurs.

Table 21-4 MPU Abort Cases

21.3.1 Read Cases

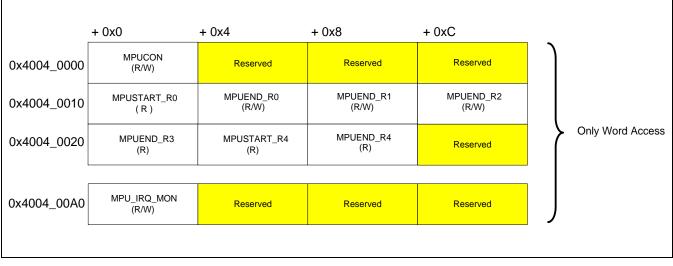
Table 21-5	Abort Occurrences DURING Reading Smart Option 0
------------	---

Code		Read											
Code	RS	R0	R1	R2	R3	R4	SFR	MPU_SFR	CPU_PERI				
RS	I	H2L_ABT	H2L_ABT	H2L_ABT	H2L_ABT	I	Ι	_	_				
R0	-	_	_	-	-	-	-	_	_				
R1	-	-	_	-	-	-	-	_	-				
R2	Ι	H2L_ABT	_	-	-	I	Ι	_	-				
R3	I	H2L_ABT	H2L_ABT	Ι	Ι	I	Ι	_	_				
R4	-	H2L_ABT	H2L_ABT	H2L_ABT	-	Ι	-	_	_				

Table 21-6 Abort Occurrences DURING Reading Smart Option 1

Code	Read								
Code	RS	R0	R1	R2	R3	R4	SFR	MPU_SFR	CPU_PERI
RS	Ι	H2L_ABT	H2L_ABT	H2L_ABT	H2L_ABT		I	_	_
R0	Ι	_	_	_	_	-	-	_	_
R1	_	_	_	_	_	-	-	_	_
R2	_	H2L_ABT	_	-	_	-	-	_	-
R3	1	H2L_ABT	H2L_ABT	_	_	-	-	_	_
R4	Ι	H2L_ABT	H2L_ABT	H2L_ABT	H2L_ABT	-	-	-	-

21.3.2 Write Cases


Code									
Code	RS	R0	R1	R2	R3	R4	SFR	MPU_SFR	CPU_PERI
RS	-	H2L_ ABT	H2L_ ABT	H2L_ ABT	H2L_ ABT	_	-	SFR_W_ ABT	_
R0	SYS_W_ ABT	-	-	-	-	_	-	-	_
R1	SYS_W_ ABT	REG_W_ ABT	-	-	-	-	_	-	-
R2	SYS_W_ ABT	H2L_ ABT	REG_W_ ABT	-	-	-	_	SFR_W_ ABT	-
R3	SYS_W_ ABT	H2L_ ABT	H2L_ ABT	REG_W_ ABT	_	_	_	SFR_W_ ABT	-
R4	SYS_W_ ABT	H2L_ ABT	H2L_ ABT	H2L_ ABT	REG_W_ ABT	_	_	SFR_W_ ABT	_

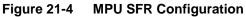

Table 21-7 Abort Occurrences DURING Writing Smart Option 0

Table 21-8 Abort Occurrences DURING Writing Smart Option 1

Code		Write											
Code	RS	R0	R1	R2	R3	R4	SFR	MPU_SFR	CPU_PERI				
RS	-	H2L_ ABT	H2L_ ABT	H2L_ ABT	H2L_ ABT	_	-	SFR_W_ ABT	_				
R0	SYS_W_ ABT	-	-	-	-	-	_	-	-				
R1	SYS_W_ ABT	REG_W_ ABT	-	-	_	Ι	Ι	-	_				
R2	SYS_W_ ABT	H2L_ ABT	REG_W_ ABT	Ι	-	Ι	Ι	SFR_W_ ABT	_				
R3	SYS_W_ ABT	H2L_ ABT	H2L_ ABT	REG_W_ ABT	_	-	-	SFR_W_ ABT	_				
R4	SYS_W_ ABT	H2L_ ABT	H2L_ ABT	H2L_ ABT	REG_W_ ABT	_	_	SFR_W_ ABT	_				

21.4 MPU SFR Configuration

Region 0 and 1 can read/write MPU SFR (Special Function Register), but Region 2, 3, 4 cannot write MPU SFR. The user cannot access MPU SFR through DMA operation. DMA cannot access MPU violation region. For example, If DMA which has a source address of region 0 is enabled in region 3, MPU will assert abort because region 3 cannot access region 0.

If access against the set condition is performed, chip automatically generates MPUINT (Core interrupt Vector 0x0000_0040) interrupt. For the detail interrupt source, MPU_IRQ_MON register indicates each case of abort.

21.5 No Allowance Cases

MPU does not support the normal operation in those cases.

- No Overlapped Region
 - MPU basically does not support any overlapped region cases.
 - Each region's start address is the same as the end address of neighbor region and region 0's start address and region 3's end address are fixed so it makes no overlapped region.
- No Allowance of Changing Region Hierarchy.
 - MPU supports fixed region hierarchy, which region 0 responds to the lowest address of physical memory and the address of region 1 must be lower than that of region 2 and so on.
 - So MPU does not support normal operation in case of changing region hierarchy like figure below.

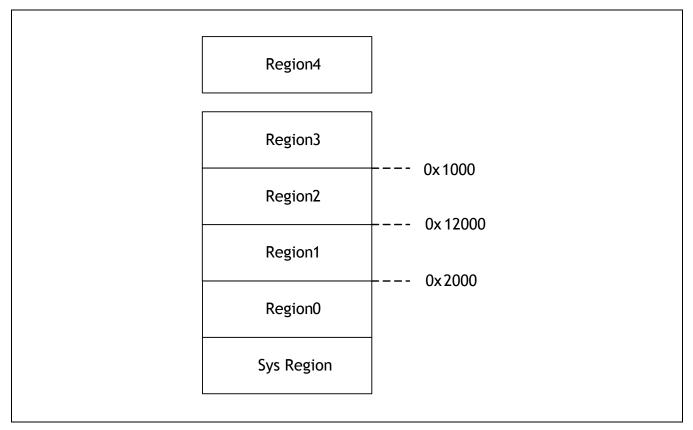


Figure 21-5 NO Allowance Case

21.6 Register Description

21.6.1 Register Map Summary

• Base Address: 0x4004_0000

Register	Offset	Description	Reset Value
MPUCON	0x0000	MPU control register	0x0000_0000H
RSVD	0x0004	Reserved	0x0000_0000H
RSVD	0x0008	Reserved	0x0000_0000H
RSVD	0x000C	Reserved	0x0000_0000H
MPUSTART_R0	0x0010	Region 0 start register	0x0000_00C8H
MPUEND_R0 ⁽¹⁾	0x0014	Region 0 end register	0x0000_1000H
MPUEND_R1 (2)	0x0018	Region 1 end register	0x0000_2000H
MPUEND_R2 ⁽³⁾	0x001C	Region 2 end register	0x0000_3000H
MPUEND_R3	0x0020	Region 3 end register	0x0002_0000H
MPUSTART_R4	0x0024	Region 4 start register	0x1000_0000H
MPUEND_R4	0x0028	Region 4 end register	0x1000_2000H
RSVD	0x002C	Reserved	0x0000_0000H
RSVD	0x0030	Reserved	0x0000_0000H
RSVD	0x0034	Reserved	0x0000_0000H
RSVD	0x0038	Reserved	0x0000_0000H
RSVD	0x003C	Reserved	0x0000_0000H
RSVD	0x0040 to 0x009C	Reserved	0x0000_0000H
MPU_IRQ_MON	0x00A0	MPU IRQ monitoring register	0x0000_0000H

NOTE:

- 1. MPUEND_R0 covers both END address of Region 0 and START address of region 1.
- 2. MPUEND_R1 covers both END address of Region 1 and START address of region 2.
- 3. MPUEND_R2 covers both END address of Region 2 and START address of region 3.

Each region is located in START address \leq MPU region < END address.

21.6.1.1 MPUCON

- Base Address: 0x4004_0000
- Address = Base Address + 0x0000, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RSVD																MPUCON
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:1]	R	Reserved (Not used for S3FN60D)	0000_000
MPUCON	[0]	RW	MPU Control Bit ^(NOTE) 0 = MPU Disable 1 = MPU Enable	Default value is "0". But it can be "1" by Smart option (Refer to page 2-3)

NOTE: It is possible to enable/disable MPU through MPUCON.0 bit if smart option Debug bit (C0H.18) is "1". If smart option Debug bit (C0H.18) is "0", MPU is always enabled.

21.6.1.2 MPUSTART_R0

- Base Address: 0x4004_0000
- Address = Base Address + 0x0010, Reset Value = 0x0000_00C8H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															ТЯ																
															STAL																
															RO																
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
R0_STARTADDR	[31:0]	R	Region0 Start Address Bits	0xC8

NOTE: No SFR Registers for Sys Region.

21.6.1.3 MPUEND_R0

- Base Address: 0x4004_0000
- Address = Base Address + 0x0014, Reset Value = 0x0000_1000H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					RSVD												RU_ENUAUUK											K0_Offset			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R W	R W	R W		R W	R W		R W	R W	R W	R W	R W	R W	R W	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:22]	R	Reserved (Not used)	0
R0_ENDADDR	[21:8]	RW	Region Base Address Bits	0x10
R0_Offset	[7:0]	R	The minimum size of each region is 256 byte.so these bits are fixed to 8'h00.	0x00

Region 0, 1 & 2 End Address consists of so whatever value is written to either[31:22] or [7:0] bits, the value of these bits are never changed.

21.6.1.4 MPUEND_R1

- Base Address: 0x4004_0000
- Address = Base Address + 0x0018, Reset Value = 0x0000_2000H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					RSVD												K1_ENUAUUK											K1_Offset			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R W	R W	R W		R W	R W		R W	R W	R W	R W	R W	R W	R W	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:22]	R	Reserved (Not used)	0
R1_ENDADDR	[21:8]	RW	Region base address bits	0x20
R1_Offset	[7:0]	R	The minimum size of each region is 256 byte.so these bits are fixed to 8'h00.	0x00

Region 0, 1 & 2 End Address consists of so whatever value is written to either[31:22] or [7:0] bits, the value of these bits are never changed.

21.6.1.5 MPUEND_R2

- Base Address: 0x4004_0000
- Address = Base Address + 0x001C, Reset Value = 0x0000_3000H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					RSVD												K2_ENUAUUK											K2_Offset			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R W	R W	R W		R W	R W		R W	R W	R W	R W	R W	R W	R W	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
RSVD	[31:22]	R	Reserved (Not used)	0
R2_ENDADDR	[21:8]	RW	Region base address bits	0x30
R2_Offset	[7:0]	R	The minimum size of each region is 256 byte.so these bits are fixed to 8'h00.	0x00

Region 0, 1 & 2 End Address consists of so whatever value is written to either[31:22] or [7:0] bits, the value of these bits are never changed.

21.6.1.6 MPUEND_R3

- Base Address: 0x4004_0000
- Address = Base Address + 0x0020, Reset Value = 0x0002_0000H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																í															
															FNDAL																
															R3 F1	1															
															ц	•															
_		_	_	_	_	_		_	_	_		-	_		_	-	_	_		_	_				_	_			_		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
R3_ENDADDR	[31:0]	R	Region3 End Address Bits	0x20000

NOTE: No SFR Registers for Sys Region.

21.6.1.7 MPUSTART_R4

• Base Address: 0x4004_0000

• Address = Base Address + 0x0024, Reset Value = 0x1000_0000H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															œ																
															TART																
															R4 S																
		-					-																								
0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
R4_STARTADDR	[31:0]	R	Region4 Start Address Bits	0x1000_0000

NOTE: No SFR Registers for Sys Region.

21.6.1.8 MPUEND_R4

- Base Address: 0x4004_0000
- Address = Base Address + 0x0028, Reset Value = 0x1000_2000H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																í.															
															FNDAI																
															д Н Н	1															
															-	•															
0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
-	-	-		-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-		-		-
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Name	Bit	Туре	Description	Reset Value
R4_ENDADDR	[31:0]	R	Region4 end address bits	0x1000_2000

NOTE: No SFR Registers for Sys Region.

21.6.1.9 MPU_IRQ_MON

- Base Address: 0x4004_0000
- Address = Base Address + 0x00A0, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													KSVD													DMA_INVAL_ABORT	MPUSFR_WRITE_ABORT	REGION_WRITE_ABORT	HIGH_TO_LOW_ABORT	SYS_WRITE_ABORT	RSVD
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																											W	W	W	W	

Name	Bit	Туре	Description	Reset Value
RSVD	[31:6]	R	Reserved (Not used)	0
DMA_INVAL _ABORT	[5]	R	DMA Invalid abort monitor 0 = Not detected 1 = Detected	0
MPUSFR_WRITE _ABORT	[4]	RW	MPUSFR write abort monitor 0 = Not detected 1 = Detected	0
REGION_WRITE _ABORT	[3]	RW	Region write abort monitor 0 = Not detected 1 = Detected	0
HIGH_TO_LOW _ABORT	[2]	RW	High to low abort monitor 0 = Not detected 1 = Detected	0
SYS_WRITE _ABORT	[1]	RW	System write abort monitor 0 = Not detected 1 = Detected	0
RSVD	[0]	R	Reserved (Not used)	0

All MPU Mon register is not set when MPU is disabled.

If access against access condition is generated, MPU MON register makes a specific bit set in hardware and enables user to monitor it.

- 0-bit is set to "1" if abort is generated from program memory space while MPU is in operation.
- 1-bit is set to "1" if "jump" is generated in non-mapped area.

Each register is only set "0" to "1" by generation from MPU. It just use for the monitoring status. And it is only set "1" to "0" by generation from USER. This setting is for the checking and clearing register.

When MPUSFR_WRITE_ABORT bit is set to "1" in Region 2, 3 and 4, USER cannot change other MPU SFR (MPUCON[0], REGION0_END, REGION1_END and REGION2_END registers) values even in Region 0 and Region 1 without clearing the bit, MPUSFR_WRITE_ABORT, in advance.

Therefore user should clear the MPUSFR_WRITE_ABORT bit before changing MPU SFR register' value.

DMA_INVAL_ABORTbit is cleared when DMA operation becomes normal.

	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	

22 Low Voltage Detector

22.1 Overview

The S3FN60D micro-controller has a built-in Low Voltage Detector (LVD) circuit, which allows LVD and LVD_FLAG detection of power voltage.

- Low voltage detect level for Backup Mode and Reset (LVD): 1.64V (Typ.) \pm 40 mV
- Low voltage detect level for Flash Flag Bit (LVD_FLAG): 1.90, 2.10 (Typ.) \pm 70 mV/2.30, 2.40 V (Typ.) \pm 90 mV

After power-on, LVD block is always enabled. LVD block is only disable when executed STOP instruction. The LVD block of S3FN60D consists of two comparators and a resistor string. One of comparators is for LVD detection, and the other is for LVD_FLAG detection.

22.2 LVD

LVD circuit supplies two operating modes by one comparator: back-up mode input and system reset input. The S3FN60D can enter the back-up mode and generate the reset signal by the LVD level ⁽¹⁾ detection using LVD circuit. When LVD circuit detects the LVD level in falling power, S3FN60D enters the Back-up mode. Back-up mode voltage is VDD between LVD and POR.

Back-up mode input automatically makes a chip stop. When LVD circuit detects the LVD level in rising power, the system reset occurs. When the reset pin is at a high state and the LVD circuit detects rising edge of V_{DD} on the point V_{LVD} , the reset pulse generator makes a reset pulse, and system reset occurs. This reset by LVD circuit is one of the S3FN60D reset sources. (Refer to page 8-13 RESETID register.)

22.2.1 LVD FLAG

The other comparator's output makes LVD indicator flag bit "1" or "0". That is used to indicate low voltage level. When the power voltage is below the LVD_FLAG level, the bit 0 of LVDCON register is set "1". When the power voltage is above the LVD_FLAG level, the bit 0 of LVDCON register is set "0" automatically. LVDCON.0 can be used flag bit to indicate low battery in IR application or others.

NOTE:

- 1. A term of LVD is a symbol of parameter that means Low Level Detect Voltage for Back-Up Mode.
- 2. A term of LVD_FLAG is a symbol of parameter that means Low Level Detect Voltage for Flag Indicator
- 3. The voltage gaps (LVD_GAPn (n = 1 to 4)) between LVD and LVD FLAGN (n = 1 to 4) have ± 80 mV distribution. LVD and LVD FLAGN (n = 1 to 4) are not overlapped. The variation of LVD FLAGN (n = 1 to 4) and LVD always is shifted in same direction. That is, if one chip has positive tolerance (e.g. ± 50 mV) in LVD FLAG, LVD has positive tolerance

Symbol	Min.	Тур.	Max.	Unit
LVD_GAP1	180	260	340	mV
LVD_GAP2	280	360	440	mV
LVD_GAP3	480	560	640	mV
LVD_GAP4	580	660	740	mV

Table 22-1 Characteristics of Low Voltage Detect Circuit

Symbol	Min.	Тур.	Max.	Unit
GAP Between LVD_Flag1 and LVD_Flag2	150	200	250	mV
GAP Between LVD_Flag2 and LVD_Flag3	150	200	250	mV
GAP Between LVD_Flag3 and LVD_Flag4	50	100	150	mV

 $(T_A = 25 \ ^{\circ}C \ to + 85 \ ^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
LVD enable time	t _{LVD}	VDD = 1.4 V	8	20	36	μS

In stop mode, LVD turns off. When external interrupt occurs, LVD needs tLVD during 20 µs to wake up. If VDD is below VLVD after external interrupt, chip goes into back-up. Because tLVD time is not enough to start oscillation, chip is not operated to abnormal state.

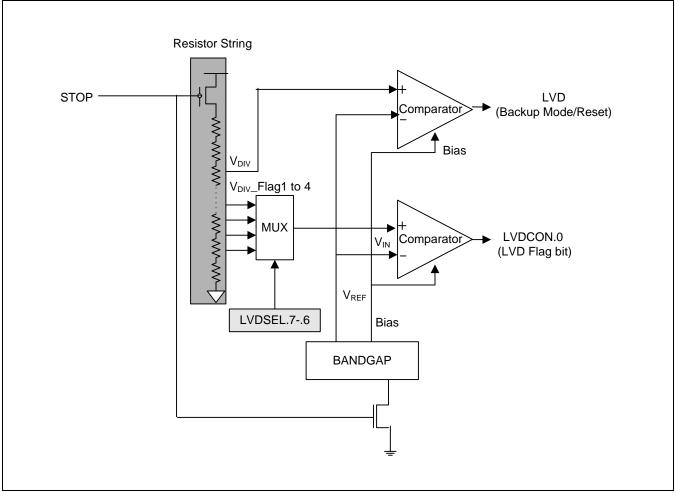


Figure 22-1 Low Voltage Detect (LVD) Block Diagram

22.3 Register Description

22.3.1 Register Map Summary

• Base Address: 0x4002_2000

Register	Offset	Description	Reset Value
LVDCON	0x0030	Control register	0x0000_0000
LVDSEL	0x0034	Control/status register	0x0000_0000

22.3.1.1 LVDCON

- Base Address: 0x4002_2000
- Address = Base Address + 0x0030, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RSVD																LVD_FLAG
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:1]	R	Reserved (Not used)	0
LVD_FLAG	[0]	RW	LVD Indicator flag bit 0 = VDD > LVD_Flag Voltage 1 = VDD < LVD_Flag Voltage	0

LVDCON.0 is used flag bit to indicate low battery in IR application or others. When LVD circuit detects LVD_FLAG, LVDCON.0 flag bit is set automatically. The reset value of LVDCON is #00H

22.3.1.2 LVDSEL

- Base Address: 0x4002_2000
- Address = Base Address + 0x0034, Reset Value = 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																															ი
																														i	LVD_FLA
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
																														W	W

Name	Bit	Туре	Description	Reset Value
RSVD	[31:2]	R	Reserved (Not used)	0
LVD_FLAG	[1:0]	RW	LVD Indicator flag bit 00 = LVD Flag level: 1.90 V (Typ.) 01 = LVD Flag level: 2.10 V (Typ.) 10 = LVD Flag level: 2.30 V (Typ.) 11 = LVD Flag level: 2.40 V (Typ.)	0

LVDSEL is used to select LVD flag level. The reset value of LVDSEL is #00H.

• .											

23 S3FN60D Flash MCU

23.1 Overview

The S3FN60D single-chip CMOS microcontroller is the Flash MCU. It has an on-chip Flash MCU ROM. The Flash ROM is accessed by serial data format

This chapter is about the Tool Program Mode of Flash MCU. If you want to know the User Program Mode, refer to the Chapter 20 Embedded Flash Memory Interface.

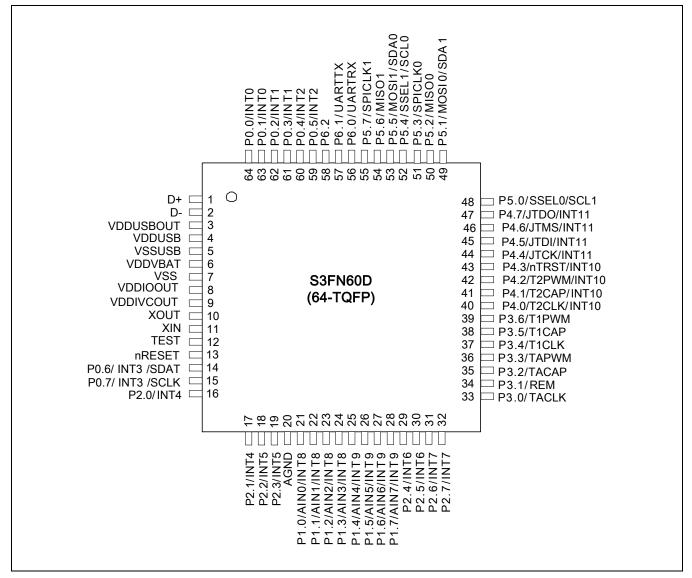


Figure 23-1 S3FN60D Pin Assignment

Main Chip				During Programming
Pin Name	Pin Name	Pin No.	I/O	Function
P0.6	SDAT	14	I/O	Serial data pin. Output port when reading and input port when writing. SDAT (P0.6) can be assigned as an input or push-pull output port.
P0.7	SCLK	15	I/O	Serial clock pin. Input only pin.
TEST	TEST	12	I	Tool mode selection when TEST pin sets Logic value "1". If user uses the flash writer tool mode, user should connect TEST pin to V_{DD} . (S3FN60D supplies high voltage 12.5 V by internal high voltage generation circuit.).
nRESET	nRESET	13	I	Chip Initialization
VDDVBAT, VSS	VDDVBAT, VSS	6, 7	_	Power supply pin for logic circuit. VDDVBAT should be tied to + 3.3 V during programming.

T I I 00 (
Table 23-1	Descriptions of Pins Used to Read/Write the Flash ROM

23.1.1 Test Pin Voltage

The TEST pin on socket board for OTP/MTP writer must be connected to Vdd (3.3 V). The TEST pin on socket board must not be connected Vpp (12.5 V) which is generated from OTP/MTP Writer. So the specific socket board for S3FN60D must be used, when writing or erasing using OTP/MTP writer.

	•	
	•	

24.1 Overview

The debug features embedded in the Cortex-M0 are a subset of the ARM CORESIGHT Design Kit. The debug block contains the features supporting the core stop by means of 4-breakpoints or 2-watch points, and it is also able to resume or restore the core operation.

24.2 Feature

The on-chip debug block provided Cortex-M0 consists of the following features:

- JTAG debug port
- AHB access port (AHB-AP)
- Flash Patch Breakpoint (FPB): 4 support
- Data WATCHPOINT Trigger (DWT): 2 support

The available interfaces for debug are:

• JTAG debug port

The interfaces are multiplexed with I/O port, thus, the configuration should be carefully done

24.2.1 Block Diagram

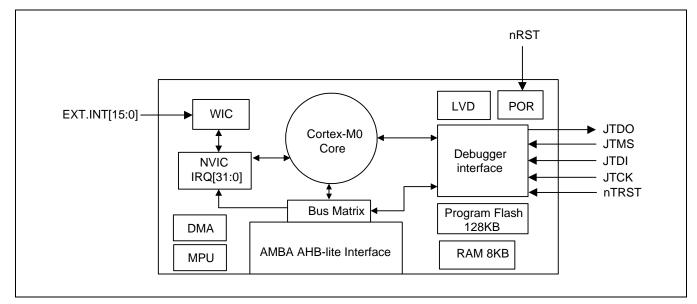


Figure 24-1 Block Diagram

24.2.2 ARM Reference

- Cortex-M0 Technical Reference Manual (TRM)
- ARM Debug Interface

	•	
	•	

25 Electrical Data

25.1 Overview

In this section, S3FN60D electrical characteristics are presented in tables and graphs. The information is arranged in the following order:

- Absolute maximum ratings
- D.C. electrical characteristics
- Characteristics of low voltage detect circuit
- Data retention supply voltage in stop mode
- Typical low-side driver (Sink) characteristics
- Typical high-side driver (Source) characteristics
- Stop mode release timing when initiated by an external interrupt
- Stop mode release timing when initiated by a reset
- Stop mode release timing when initiated by a LVD
- Input/output capacitance
- A.C. electrical characteristics
- Input timing for external interrupts
- Input timing for reset
- Oscillation characteristics
- Oscillation stabilization time
- Operating voltage range
- A.C. electrical characteristics for internal flash ROM

25.2 Absolute Maximum Ratings

js
2

$(T_A =$	25	°C)
----------	----	-----

Parameter	Symbol	Conditions	Rating	Unit		
Supply voltage	V _{DD}	_	- 0.3 to + 3.8			
Input voltage	V _{IN}	_	-0.3 to V _{DD} + 0.3	V		
Output voltage	Vo	All output pins	-0.3 to V _{DD} + 0.3			
Output ourrent high		One I/O pin active	– 18			
Output current high	I _{ОН}	ЮН	ЮН	All I/O pins active	- 60	
Output ourrent low		One I/O pin active	+ 30	mA		
Output current low	I _{OL}	All I/O pins active	+ 150			
Operating temperature	T _A	_	– 25 to + 85	°C		
Storage temperature	T _{STG}	_	– 65 to + 150			

25.3 D.C. Electrical Characteristics

Table 25-2	D.C. Electrical Characteristics
------------	---------------------------------

(T_A = -25 °C to + 85 °C, V_{DD} = 1.60 V to 3.6 V)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operating voltage	V _{DD}	F _{OSC} = 1 MHz to 20 MHz	1.60	_	3.6	
	V _{IH1}	All input pins except V_{IH2} and V_{IH3}	$0.8 V_{DD}$		V_{DD}	
Input high voltage	V _{IH2}	nRESET	$0.85 V_{DD}$	_	V _{DD}	
	V _{IH3}	X _{IN}	V _{DD} - 0.3		V_{DD}	
	V _{IL1}	All input pins except V_{IL2} and V_{IL3}			$0.2 \ V_{DD}$	
Input low voltage	V _{IL2}	nRESET	0	_	$0.2 V_{DD}$	
	V _{IL3}	X _{IN}			0.3	
	V _{OH1}	$V_{DD} = 1.68 \text{ V}, I_{OH} = -6 \text{ mA}$ Port 3.1 only	V _{DD} - 0.7	-	-	V
Output high voltage	V _{OH2}	V _{DD} = 1.68 V, I _{OH} = – 2.2 mA P0, P1, P2, P3 and P4	V _{DD} - 0.7	-	-	
	V _{OH3}	V _{DD} = 1.68 V, I _{OH} = - 1 mA P5 and P6	V _{DD} - 1.0	-	-	
	V _{OL1}	$V_{DD} = 1.68 \text{ V}, I_{OL} = 8 \text{ mA}$ Port 3.1 only		0.4	0.5	
Output low voltage	V _{OL2}	V _{DD} = 1.68 V, I _{OL} = 5 mA P0, P1, P2, P3 and P4	_	0.4	0.5	
	V _{OL3}	$V_{DD} = 1.68 \text{ V}, I_{OL} = 2 \text{ mA}$ P5 and P6		0.4	1.0	
Input high leakage	I _{LIH1}	$V_{IN} = V_{DD}$ All input pins except I _{LIH2} and X _{OUT}	_	_	1	
current	I _{LIH2}	$V_{IN} = V_{DD,} X_{IN}$			20	
Input low leakage	I _{LIL1}	$V_{IN} = 0 V$ All input pins except I _{LIL2} and X _{OUT}	_	_	- 1	
current	I _{LIL2}	$V_{IN} = 0 V, X_{IN}$			- 20	μA
Output high leakage current	I _{LOH}	V _{OUT} = V _{DD} All output pins	-	_	1	
Output low leakage current	I _{LOL}	V _{OUT} = 0 V All output pins	-	-	- 1	
	R _{L1}	$V_{IN} = 0 V, V_{DD} = 2.35 V$ $T_A = 25 °C, Ports 0 - 6$	44	67	95	
Pull-up resistors	R _{L2}	$V_{IN} = 0 V, V_{DD} = 2.35 V$ $T_A = 25 °C, nRESET$	150	500	1000	kΩ
Feedback resistor	R_{fd}	$V_{IN} = V_{DD}, V_{DD} = 2.35 V$ $T_A = 25 °C, X_{IN}$	300	700	1500	
Supply current ⁽¹⁾	I _{DD1}	Normal mode (2) V _{DD} = 3.6 V (USB block OFF)	-	7	12	mA

SAMSUNG ELECTRONICS

Parameter	Symbol	Condi	Conditions		Тур.	Max.	Unit
		12 MHz crystal					
	I _{DD1}	Normal mode $^{(2)}$ V _{DD} = 3.6 V (USB b 20 MHz crystal	-	10	18		
	I _{DD2}	Idle mode $^{(2)}$ V _{DD} = 3.6 V (USB b 12 MHz crystal	-	5	9		
	I _{DD2}	Idle mode $^{(2)}$ V _{DD} = 3.6 V (USB b 20 MHz crystal	Ι	7	12		
	I _{DD3}	PLL mode ⁽²⁾ V _{DD} = USB power (USB block ON) 12 MHz crystal		_	9	15	
	I _{DD41}	Stop mode1 (USB block OFF)	LVD OFF, V _{DD} = 3.6 V	Ι	0.5	6.5	
	I _{DD42}	Stop mode2 (USB block OFF ring OSC ON timer 3 ON)	LVD OFF, V _{DD} = 3.6 V	-	1	7.5	μΑ
	I _{DD43}	USB suspend mode	V _{DD} = VDDUSB, Suspend supply current	-	_	500	

NOTE:

1. Supply current does not include current drawn through internal pull-up resistors or external output current loads.

2. IDD1 includes flash operating current (Flash erase/write/read operation).

3. The adder by LVD on current in back-up mode is 20 μ A.

Conditions	Min.	Тур.	Max.	Unit
LVD on current in back-up mode V_{DD} = 1.60 V	-	20	35	μA

4. Back-up mode voltage is VDD between LVD and POR.

25.4 Characteristics of Low Voltage Detect Circuit

```
Table 25-3 Characteristics of Low Voltage Detect Circuit
```

 $(T_A = -25 \ ^\circ C \ to + 85 \ ^\circ C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Hysteresis voltage of LVD (Slew rate of LVD)	ΔV	_	_	100	200	mV
Low level detect voltage for back-up mode	LVD	_	1.60	1.64	1.68	
Low level detect voltage for flag indicator	LVD_FLAG1	-	1.83	1.90	1.97	
	LVD_FLAG2	-	2.03	2.10	2.17	V
	LVD_FLAG3	-	2.21	2.30	2.39	
	LVD_FLAG4	_	2.31	2.40	2.49	

NOTE: The voltage gaps (LVD_GAPn (n = 1 to 4)) between LVD and LVD FLAGn (n = 1 to 4) have ± 80 mV distribution. LVD and LVD FLAGn (n = 1 to 4) are not overlapped. The variation of LVD FLAGn (n = 1 to 4) and LVD always is shifted in same direction. That is, if one chip has positive tolerance (e.g. + 50 mV) in LVD FLAG, LVD has positive tolerance.

		-		
Symbol	Min.	Тур.	Max.	Unit
LVD_GAP1	180	260	340	
LVD_GAP2	280	360	440	
LVD_GAP3	480	560	640	
LVD_GAP4	580	660	740	mV
GAP between LVD_Flag1 and LVD_Flag2	150	200	250	
GAP between LVD_Flag2 and LVD_Flag3	150	200	250	
GAP between LVD_Flag3 and LVD_Flag4	50	100	150	

25.5 LVD Enable Time

	Table 25-4	LVD Enable Time
--	------------	-----------------

 $(T_A = -25 \ ^{\circ}C \ to + 85 \ ^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
LVD enable time	t _{LVD}	V _{DD} = 1.4 V	8	20	36	μs

In stop mode, LVD turns off. When external interrupt occurs, LVD needs t_{LVD} during 20 μ s to wake up. If V_{DD} is below V_{LVD} after external interrupt, chip goes into back-up. Because t_{LVD} time isn't long enough to start oscillation, chip is not operated to abnormal state.

25.6 A/D Converter Electrical Characteristics

Table 25-5 A/D Converter Electrical Characteristics

 $(T_A = -25 \ ^{\circ}C \ to + 85 \ ^{\circ}C, \ V_{DD} = 1.8 \ V \ to \ 3.6 \ V)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	-	-	-	10	-	bit
Integral linearity error	ILE			_	± 1.5	
Differential linearity error	DLE	$V_{DD} = 3.6 V$		_	± 1	
Offset error of top	EOT	V _{SS} = 0 V ADC clock = 700 kHz	_	_	± 6.5	LSB
Offset error of bottom	EOB			_	± 2	
Conversion time ⁽¹⁾	T _{CON}	-	20	_	_	μs
Analog input voltage	VIAN	-	V _{SS}	_	V _{DD}	V
Analog input impedance	R _{AN}	-	-	-	30K	Ω
Analog input current	I _{ADIN}	V _{DD} = 3.6 V	-	_	120	μA
		V _{DD} = 3.6 V		_	1	mA
Analog block current	I _{ADC}	$V_{DD} = 3.6 V$ When power down mode	_	_	100	nA

NOTE:

1. Conversion time is the time required from the moment a conversion operation starts until it ends.

2. IADC is an operating current during A/D converter.

3. The top offset error varies \pm 6 LSB over – 25 °C to + 85 °C with offset compensation at 25 °C.

25.7 Power on Reset Circuit

Table 25-6Power On Reset Circuit

 $(T_A = -25 \ ^{\circ}C \ to + 85 \ ^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power on reset (POR) voltage	V_{POR}	-	0.8	1.1	1.4	V

25.8 Data Retention Supply Voltage in Stop Mode

 Table 25-7
 Data Retention Supply Voltage in Stop Mode

 $(T_A = -25 \ ^\circ C \ to + 85 \ ^\circ C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Data retention supply voltage	V _{DDDR}	—	0.8	-	3.3	V

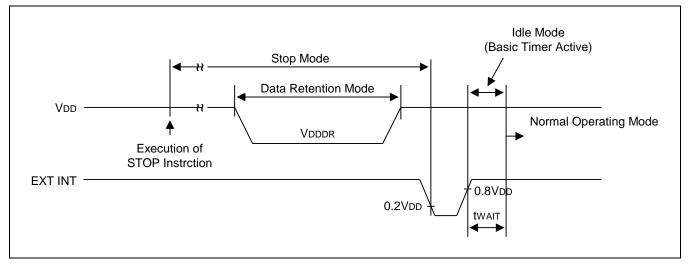


Figure 25-1 Stop Mode Release Timing when Initiated by an External Interrupt

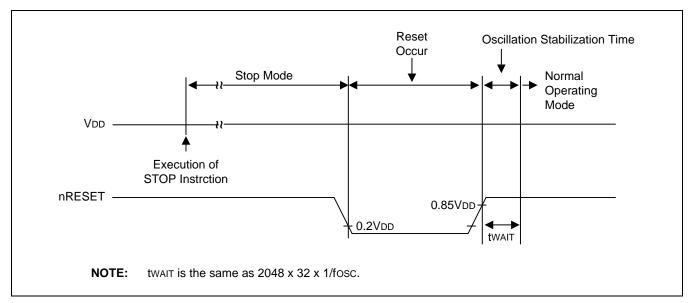


Figure 25-2 Stop Mode Release Timing when Initiated by a Reset

SAMSUNG ELECTRONICS

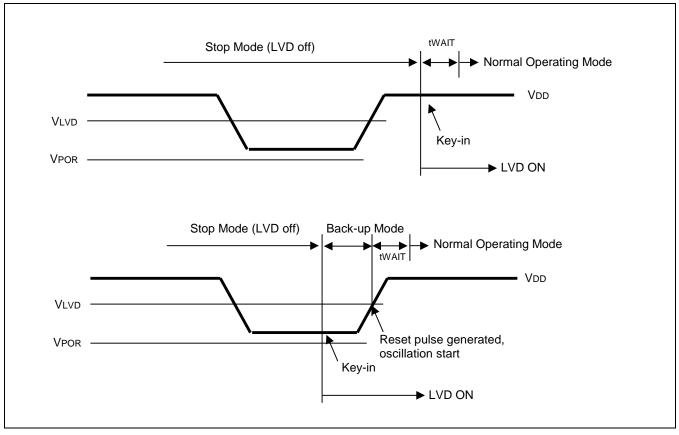
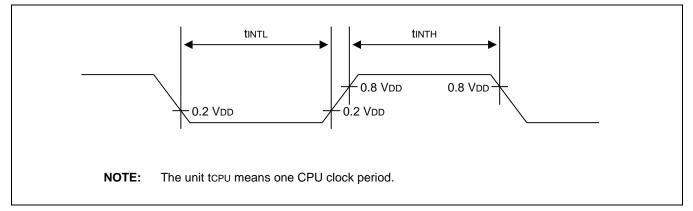


Figure 25-3 Stop Timing Diagram for Back-up Mode Input in Stop Mode

25.9 Input/Output Capacitance


Table 23-0 Input/Output Capacitance	Table 25-8	Input/Output Capacita	nce
-------------------------------------	------------	-----------------------	-----

 $(T_A = -25 \ ^{\circ}C \ to + 85 \ ^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input capacitance	C _{IN}	f = 1 MHz	-	-	10	pF
Output capacitance	C _{OUT}	$V_{DD} = 0 V$, unmeasured pins are	_	-	-	-
I/O capacitance	C _{IO}	connected to V_{SS}	_	-	-	-
Interrupt input high, low width ⁽¹⁾	t _{INTH} , t _{INTL}	Port0, Port1, Port2 and Port4 $V_{DD} = 3.6 V$	75	140	300	ns
nRESET input low width ⁽²⁾	t _{RSL}	Input V _{DD} = 3.6 V	1	2.5	5	μS

NOTE:

- 1. The noise filter of tINTH/L have min.75 ns to max. 300 ns distribution.
 - If signal width is smaller than 75 ns, the signal is always recognized as invalid pulse.
 - If signal width is greater than 300 ns, the signal is always recognized as valid pulse.
- 2. The noise filter of tRSL have min.1 μs to max. 5 μs distribution.
 - If signal width is smaller than 1 $\mu s,$ the signal is always recognized as invalid pulse.
 - If signal width is greater.

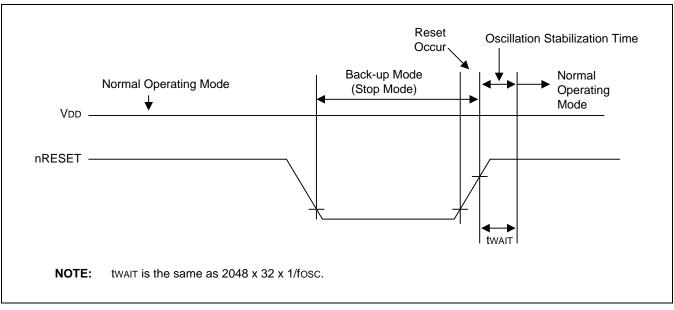


Figure 25-5 Input Timing for Reset (nRESET Pin)

25.10 Oscillation Characteristics

Table 25-9	Oscillation	Characteristics

 $(T_A = -25 \ ^{\circ}C \ to + 85 \ ^{\circ}C)$

Oscillator	Clock Circuit	Conditions	Min.	Тур.	Max.	Unit
Crystal		CPU clock oscillation frequency	1	_	20	
Ceramic		CPU clock oscillation frequency	1	_	20	MHz
External clock	External Clock Open Pin XIN Xout	X _{IN} input frequency	1	_	20	

25.11 Ring Oscillator Characteristics

Table 25-10 Ring Oscillator Characteristics

 $(T_A = -25 \ ^{\circ}C \ to + 85 \ ^{\circ}C, \ V_{DD} = 3.6 \ V)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Ring oscillator f _{ring}	Frequency	16.384	32.768	55.705	kHz	
	Duty cycle	40	-	60	%	
	-	Current consumption	_	0.4	4	μA

25.12 Oscillation Stabilization Time

$(T_A = -25)$	°C to i	95 °C	V _	261/
$(I_A = -23)$	- C 10 +	00°C,	$v_{DD} =$	3.0V)

Oscillator	Test Condition	Min.	Тур.	Max.	Unit
Main crystal	f _{OSC} > 1 MHz	-	-	20	
Main ceramic	Oscillation stabilization occurs when V_{DD} is equal to the minimum oscillator voltage range	_	_	10	ms
External clock (Main system)	X_{IN} input High and Low width (t_{XH} , t_{XL})		-	500	ns
Oscillator stabilization wait time	tWAIT when released by a reset ⁽¹⁾	_	216/f _{OSC}	Ι	ms
_	tWAIT when released by an interrupt ⁽²⁾		_	_	

NOTE:

1. f_{OSC} is the oscillator frequency.

2. The duration of the oscillation stabilization time (t_{WAIT}) when it is released by an interrupt is determined by the setting in the basic timer control register, BTCON.

25.13 AC Electrical Characteristics for Internal Flash ROM

Table 25-12 AC Electrical Characteristics for Internal Flash ROM

 $(T_A = -25 \ ^{\circ}C \ to + 85 \ ^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Flash erase/write/read voltage	Fewrv	V _{DD}	1.60	3.3	3.6	V
Programming time ⁽²⁾	Ftp	-	20	_	30	μS
Page erasing time ⁽³⁾	Ftp1	-	4	-	12	
Sector erasing time ⁽³⁾	Ftp2	_	12	-	28	ms
Chip erasing time ⁽⁴⁾	Ftp3	-	32	-	70	
Data access time	Ft _{RS}	V _{DD} = 1.6 V	_	_	50	Ns
Number of writing/erasing	FNwe	_	10,00 0	_	_	times
Data retention	Ftdr	-	10	_	-	years

NOTE:

1. Flash hardware operating times. Total flash operating (program/erase) time may depend upon the software.

2. The programming time is the time during which one byte (8-bit) is programmed.

3. The Page (128 byte), Sector (8K) erasing time is the time during which all blocks are erased.

4. In the case of SFN60D, the chip erasing is available in Tool Program Mode only.

25.14 ESD Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Electrostatic discharge	V _{ESD}	HBM	2000	Ι	Ι		
		MM	200	Ι	1	V	
		CDM	500	_	-		

Table 25-13 ESD Characteristics

NOTE: If on board programming is needed, it is recommended that add a 0.1 μF capacitor between TEST pin and VSS for better noise immunity; otherwise, connect TEST pin to VSS directly. It is recommended also that add a 0.1 μF capacitor between nRESET pin and VSS for better noise immunity.

25.15 USB DC Electrical Characteristics

Symbol **Conditions** Min. Parameter Typ. Max. Unit 3.3 V VDDUSBOUT USB regulator out 3.0 3.6 _ USB regulator out current VUSBI _ _ _ 50 mΑ Differential input sensitivity VDI _ 0.2 _ _ Differential common mode VCM 0.8 2.5 _ voltage Low level input voltage USB_VIL 0.8 _ _ _ V High level input voltage USB_VIH 2.0 _ _ Low level output voltage USB_VOL RL = $1.5 \text{ k}\Omega \text{ to} + 3.6 \text{ V}$ _ 0.3 _ High level output voltage USB_VOH $RL = 15 k\Omega$ to GND2.8 3.6 _ ILZ Tri-state leakage current - 10 10 _ μΑ _ pF Transceiver capacitance Cin Pin to GND 10 _ _ Pull down resistance on RPD External pull down resistor 10 20 pins DPR/DNR kΩ Pull up resistance on DP RPU Enable internal resistor 1 2 _ Steady-state drive (NOTE) ZDRV Driver output impedance _ _ _ Ω ZINP MΩ Input impedance 10 _ _ _ Termination voltage for VTERM V _ 3.0 _ 3.6 upstream port pull up

Table 25-14 USB DC Electrical Characteristics

NOTE: For better noise immunity, driver output impedance is recommended to external resistors 33 Ω to 39 Ω on both DPR and DNR.

25.16 SPI Interface Transmit/Receive Timing Constants

Table 25-15 SPI Interface Transmit/Receive Timing Constants

 $(T_A = -25 \text{ to } 85 \text{ }^\circ\text{C}, \text{ V}_{DD} = 2.0 \text{V to } 3.6 \text{ V})$

Parameter		Symbol	Min.	Тур.	Max.	Unit
SPI Mas	ster Operating Frequency	1/t _{SPIMCK}	_	Ι	SCLK/2	MHz
SPI Slav	ve Operating Frequency	1/t _{SPISCK}	_	-	SCLK/12	
	SPI MOSI master output delay time	t _{SPIMOD}	_	-	1	
	SPI MOSI slave input setup time	t _{SPISIS}	1/4 × TSPICLKIN – 2	-	_	
	SPI MOSI slave input hold time	t _{SPISIH}	1/4 × TSPICLKIN + 2	I	_	
Ch 0	SPI MISO slave output delay time	t _{SPISOD}	_	I	300	
Chu	SPI MISO master input setup time	t _{SPIMIS}	$1/4 \times TSPICLKOUT - 2$	Ι	-	
	SPI MISO master input hold time	t _{SPIMIH}	$1/4 \times TSPICLKOUT + 2$	١	-	
	SPI nSS master output delay time	t _{SPICSSD}	_	I	TSPICLK + 0.3	
	SPI nSS slave input setup time	t _{SPICSSS}	_	I	TSPICLK + 0.3	
	SPI MOSI master output delay time	t _{SPIMOD}	_	Ι	1	ns
	SPI MOSI slave input setup time	t _{SPISIS}	1/4 × TSPICLKIN – 2	I	_	
	SPI MOSI slave input hold time	t _{SPISIH}	1/4 × TSPICLKIN + 2	-	-	
	SPI MISO slave output delay time	t _{SPISOD}	_	-	300	
Ch 1	SPI MISO master input setup time	t _{SPIMIS}	1/4 × TSPICLKOUT – 2	-	-	
	SPI MISO master input hold time	t _{SPIMIH}	1/4 × TSPICLKOUT + 2	-	-	
	SPI nSS master output delay time	t _{SPICSSD}	_	_	TSPICLK + 0.3	
	SPI nSS slave input setup time	t _{SPICSSS}	_	_	TSPICLK + 0.3	

NOTE:

1. Clock cycle time (TSPICLK = 1/FSPICLK):

FSPICLK = FSCLK.

- FSPICLK (Min.) => 2 × FSPICLKOUT (Max.) (for master mode)
- FSPICLK (Min.) => 12 × FSPICLKIN (Max.) (for slave mode)
- FSPICLK (Max.) <= 254 × 256 × FSPICLKOUT (Min.) (for master mode)</p>
- FSPICLK (Max.) <= 254 × 256 × FSPICLKIN (Min.) (for slave mode)
- 2. Clock rise/fall time (TSPI_R_F): Max. = 12 ns with CL = 30 pF.

Caution: The SPI electrical test is not included in mass production test cases.

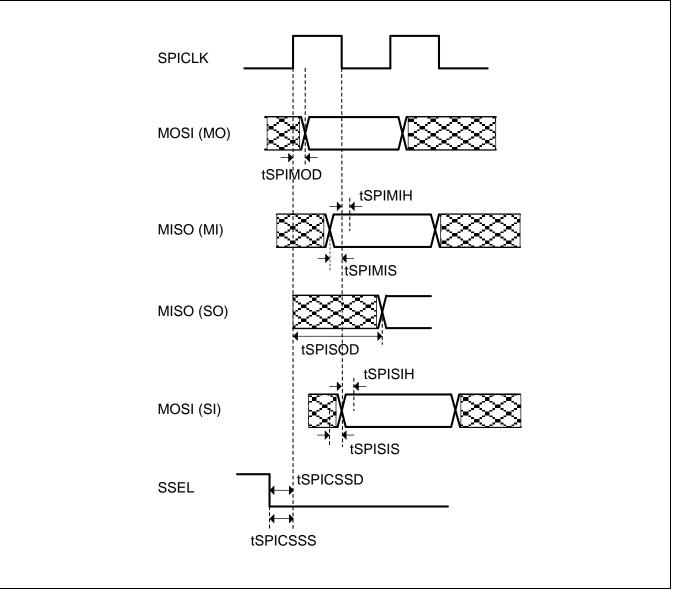
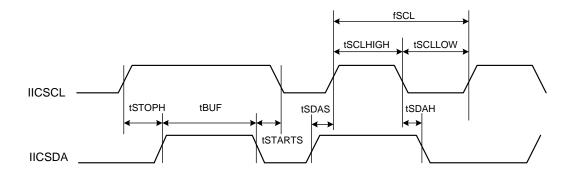


Figure 25-6 SPI Interface Transmit/Receive Timing Constants

25.17 IIC BUS Controller Module Signal Timing

Table 25-16 IIC BUS Controller Module Signal Timing

 $(T_A = -25 \text{ to } 85 \ ^\circ\text{C}, \ V_{DD} = 3.6 \ \text{V})$


Parameter	Symbol	Standard-Mode I2C Bus		Fast-Mode I2C Bus		Unit
		Min.	Max.	Min.	Max.	
SCL clock frequency	FSCL	0	100	0	400	kHz
Bus free time between a STOP and START condition	TBUF	4.7	_	1.3	-	
Hold time (Repeated) START condition. After this period, the first clock pulse is generated	THD;STA	4.0	_	0.6	Ι	
Low period of the SCL clock	TLOW	4.7	-	1.3	Ι	
High period of the SCL clock	THIGH	4.0	-	0.6	Ι	us
Set-up time for a repeated START condition	TSU;STA	4.7	-	0.6		us
Data hold time	THD;DAT	0	_	0	0.9	
Data set-up time	TSU;DAT	250	-	100	-	
Rise time for both SDA and SCL signals	Tr	-	1000	20 + 01 Cb	300	
Fall time for both SDA and SCL signals	Tf	-	300	20 + 01 Cb	300	
Set-up time for STOP condition	TSU;STO	4.0	_	0.6	_	
Capacitive load for each bus line	Cb	-	400	-	400	pF

NOTE:

1. std. means standard mode and fast means Fast Mode.

 The IIC data hold time (tSDAH) is minimum 0 ns. (IIC data hold time is minimum 0ns for standard/fast bus mode IIC specification v2.1) Please check the data hold time of your IIC device if it's 0 ns or not.

3. The IIC controller supports only IIC bus device (standard/fast bus mode), not C bus device

	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	

26 Mechanical Data

26.1 Overview

The S3FN60D microcontroller have a 64-pin TQFP package type.

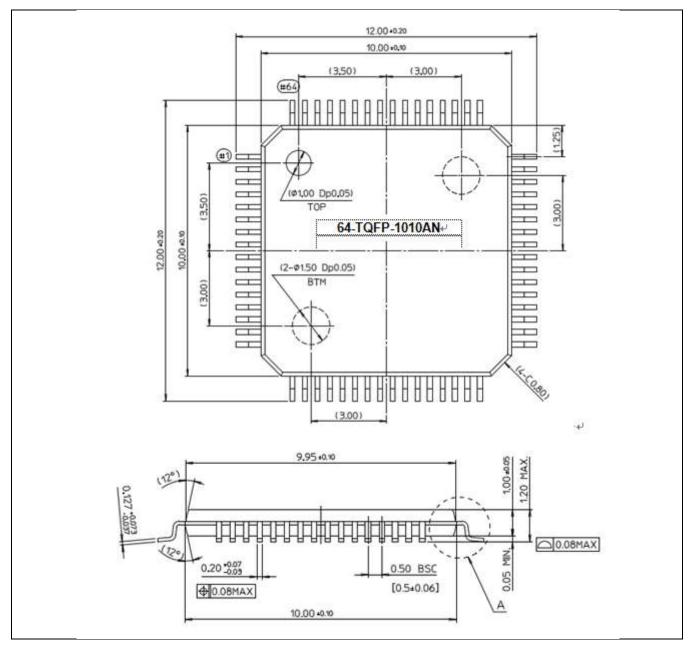


Figure 26-1 64-Pin TQFP Package Dimension

	•	
	•	

